reedsolomon-go/reedsolomon_test.go

701 lines
15 KiB
Go

/**
* Unit tests for ReedSolomon
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc. All rights reserved.
*/
package reedsolomon
import (
"bytes"
"math/rand"
"runtime"
"testing"
)
func TestEncoding(t *testing.T) {
perShard := 50000
r, err := New(10, 3)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
err = r.Encode(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
badShards := make([][]byte, 13)
badShards[0] = make([]byte, 1)
err = r.Encode(badShards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
}
func TestReconstruct(t *testing.T) {
perShard := 50000
r, err := New(10, 3)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with all shards present
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with 10 shards present
shards[0] = nil
shards[7] = nil
shards[11] = nil
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Reconstruct with 9 shards present (should fail)
shards[0] = nil
shards[4] = nil
shards[7] = nil
shards[11] = nil
err = r.Reconstruct(shards)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 13))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestVerify(t *testing.T) {
perShard := 33333
r, err := New(10, 4)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 14)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 10; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Put in random data. Verification should fail
fillRandom(shards[10])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
// Re-encode
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Fill a data segment with random data
fillRandom(shards[0])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
_, err = r.Verify(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
_, err = r.Verify(make([][]byte, 14))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestOneEncode(t *testing.T) {
codec, err := New(5, 5)
if err != nil {
t.Fatal(err)
}
shards := [][]byte{
{0, 1},
{4, 5},
{2, 3},
{6, 7},
{8, 9},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
}
codec.Encode(shards)
if shards[5][0] != 12 || shards[5][1] != 13 {
t.Fatal("shard 5 mismatch")
}
if shards[6][0] != 10 || shards[6][1] != 11 {
t.Fatal("shard 6 mismatch")
}
if shards[7][0] != 14 || shards[7][1] != 15 {
t.Fatal("shard 7 mismatch")
}
if shards[8][0] != 90 || shards[8][1] != 91 {
t.Fatal("shard 8 mismatch")
}
if shards[9][0] != 94 || shards[9][1] != 95 {
t.Fatal("shard 9 mismatch")
}
ok, err := codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("did not verify")
}
shards[8][0]++
ok, err = codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("verify did not fail as expected")
}
}
func fillRandom(p []byte) {
for i := 0; i < len(p); i += 7 {
val := rand.Int63()
for j := 0; i+j < len(p) && j < 7; j++ {
p[i+j] = byte(val)
val >>= 8
}
}
}
func benchmarkEncode(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, dataShards+parityShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkEncode10x2x10000(b *testing.B) {
benchmarkEncode(b, 10, 2, 10000)
}
func BenchmarkEncode100x20x10000(b *testing.B) {
benchmarkEncode(b, 100, 20, 10000)
}
func BenchmarkEncode17x3x1M(b *testing.B) {
benchmarkEncode(b, 17, 3, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 16MB each.
func BenchmarkEncode10x4x16M(b *testing.B) {
benchmarkEncode(b, 10, 4, 16*1024*1024)
}
// Benchmark 5 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode5x2x1M(b *testing.B) {
benchmarkEncode(b, 5, 2, 1024*1024)
}
// Benchmark 1 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode10x2x1M(b *testing.B) {
benchmarkEncode(b, 10, 2, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 1MB each.
func BenchmarkEncode10x4x1M(b *testing.B) {
benchmarkEncode(b, 10, 4, 1024*1024)
}
// Benchmark 50 data shards and 20 parity shards with 1MB each.
func BenchmarkEncode50x20x1M(b *testing.B) {
benchmarkEncode(b, 50, 20, 1024*1024)
}
// Benchmark 17 data shards and 3 parity shards with 16MB each.
func BenchmarkEncode17x3x16M(b *testing.B) {
benchmarkEncode(b, 17, 3, 16*1024*1024)
}
func benchmarkVerify(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err = r.Verify(shards)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkVerify10x2x10000(b *testing.B) {
benchmarkVerify(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkVerify50x5x50000(b *testing.B) {
benchmarkVerify(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify10x2x1M(b *testing.B) {
benchmarkVerify(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify5x2x1M(b *testing.B) {
benchmarkVerify(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkVerify10x4x1M(b *testing.B) {
benchmarkVerify(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify50x20x1M(b *testing.B) {
benchmarkVerify(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkVerify10x4x16M(b *testing.B) {
benchmarkVerify(b, 10, 4, 16*1024*1024)
}
func corruptRandom(shards [][]byte, dataShards, parityShards int) {
shardsToCorrupt := rand.Intn(parityShards)
for i := 1; i <= shardsToCorrupt; i++ {
shards[rand.Intn(dataShards+parityShards)] = nil
}
}
func benchmarkReconstruct(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
b.Fatal(err)
}
if !ok {
b.Fatal("Verification failed")
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstruct10x2x10000(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstruct50x5x50000(b *testing.B) {
benchmarkReconstruct(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x2x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct5x2x1M(b *testing.B) {
benchmarkReconstruct(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x4x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct50x20x1M(b *testing.B) {
benchmarkReconstruct(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstruct10x4x16M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 16*1024*1024)
}
func benchmarkReconstructP(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
runtime.GOMAXPROCS(runtime.NumCPU())
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
for pb.Next() {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
b.Fatal(err)
}
if !ok {
b.Fatal("Verification failed")
}
}
})
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstructP10x2x10000(b *testing.B) {
benchmarkReconstructP(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstructP50x5x50000(b *testing.B) {
benchmarkReconstructP(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP10x2x1M(b *testing.B) {
benchmarkReconstructP(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP5x2x1M(b *testing.B) {
benchmarkReconstructP(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstructP10x4x1M(b *testing.B) {
benchmarkReconstructP(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP50x20x1M(b *testing.B) {
benchmarkReconstructP(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstructP10x4x16M(b *testing.B) {
benchmarkReconstructP(b, 10, 4, 16*1024*1024)
}
func TestEncoderReconstruct(t *testing.T) {
// Create some sample data
var data = make([]byte, 250000)
fillRandom(data)
// Create 5 data slices of 50000 elements each
enc, _ := New(5, 3)
shards, _ := enc.Split(data)
err := enc.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err := enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Delete a shard
shards[0] = nil
// Should reconstruct
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Recover original bytes
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data) {
t.Fatal("recovered bytes do not match")
}
// Corrupt a shard
shards[0] = nil
shards[1][0], shards[1][500] = 75, 75
// Should reconstruct (but with corrupted data)
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if ok || err != nil {
t.Fatal("error or ok:", ok, "err:", err)
}
// Recovered data should not match original
buf.Reset()
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if bytes.Equal(buf.Bytes(), data) {
t.Fatal("corrupted data matches original")
}
}
func TestSplitJoin(t *testing.T) {
var data = make([]byte, 250000)
rand.Seed(0)
fillRandom(data)
enc, _ := New(5, 3)
shards, err := enc.Split(data)
if err != nil {
t.Fatal(err)
}
_, err = enc.Split([]byte{})
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, 50)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data[:50]) {
t.Fatal("recovered data does match original")
}
err = enc.Join(buf, [][]byte{}, 0)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = enc.Join(buf, shards, len(data)+1)
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
shards[0] = nil
err = enc.Join(buf, shards, len(data))
if err != ErrReconstructRequired {
t.Errorf("expected %v, got %v", ErrReconstructRequired, err)
}
}
func TestCodeSomeShards(t *testing.T) {
var data = make([]byte, 250000)
fillRandom(data)
enc, _ := New(5, 3)
r := enc.(*reedSolomon) // need to access private methods
shards, _ := enc.Split(data)
old := runtime.GOMAXPROCS(1)
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:], r.ParityShards, len(shards[0]))
// hopefully more than 1 CPU
runtime.GOMAXPROCS(runtime.NumCPU())
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:], r.ParityShards, len(shards[0]))
// reset MAXPROCS, otherwise testing complains
runtime.GOMAXPROCS(old)
}
func TestAllMatrices(t *testing.T) {
t.Skip("Skipping slow matrix check")
for i := 1; i < 257; i++ {
_, err := New(i, i)
if err != nil {
t.Fatal("creating matrix size", i, i, ":", err)
}
}
}
func TestNew(t *testing.T) {
tests := []struct {
data, parity int
err error
}{
{127, 127, nil},
{256, 256, ErrMaxShardNum},
{0, 1, ErrInvShardNum},
{1, 0, ErrInvShardNum},
{257, 1, ErrMaxShardNum},
// overflow causes r.Shards to be negative
{256, int(^uint(0) >> 1), errInvalidRowSize},
}
for _, test := range tests {
_, err := New(test.data, test.parity)
if err != test.err {
t.Errorf("New(%v, %v): expected %v, got %v", test.data, test.parity, test.err, err)
}
}
}