viewvc-4intranet/lib/ezt.py

831 lines
28 KiB
Python

#!/usr/bin/env python
"""ezt.py -- easy templating
ezt templates are simply text files in whatever format you so desire
(such as XML, HTML, etc.) which contain directives sprinkled
throughout. With these directives it is possible to generate the
dynamic content from the ezt templates.
These directives are enclosed in square brackets. If you are a
C-programmer, you might be familar with the #ifdef directives of the C
preprocessor 'cpp'. ezt provides a similar concept. Additionally EZT
has a 'for' directive, which allows it to iterate (repeat) certain
subsections of the template according to sequence of data items
provided by the application.
The final rendering is performed by the method generate() of the Template
class. Building template instances can either be done using external
EZT files (convention: use the suffix .ezt for such files):
>>> template = Template("../templates/log.ezt")
or by calling the parse() method of a template instance directly with
a EZT template string:
>>> template = Template()
>>> template.parse('''<html><head>
... <title>[title_string]</title></head>
... <body><h1>[title_string]</h1>
... [for a_sequence] <p>[a_sequence]</p>
... [end] <hr />
... The [person] is [if-any state]in[else]out[end].
... </body>
... </html>
... ''')
The application should build a dictionary 'data' and pass it together
with the output fileobject to the templates generate method:
>>> data = {'title_string' : "A Dummy Page",
... 'a_sequence' : ['list item 1', 'list item 2', 'another element'],
... 'person': "doctor",
... 'state' : None }
>>> import sys
>>> template.generate(sys.stdout, data)
<html><head>
<title>A Dummy Page</title></head>
<body><h1>A Dummy Page</h1>
<p>list item 1</p>
<p>list item 2</p>
<p>another element</p>
<hr />
The doctor is out.
</body>
</html>
Template syntax error reporting should be improved. Currently it is
very sparse (template line numbers would be nice):
>>> Template().parse("[if-any where] foo [else] bar [end unexpected args]")
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "ezt.py", line 220, in parse
self.program = self._parse(text)
File "ezt.py", line 275, in _parse
raise ArgCountSyntaxError(str(args[1:]))
ArgCountSyntaxError: ['unexpected', 'args']
>>> Template().parse("[if unmatched_end]foo[end]")
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "ezt.py", line 206, in parse
self.program = self._parse(text)
File "ezt.py", line 266, in _parse
raise UnmatchedEndError()
UnmatchedEndError
Directives
==========
Several directives allow the use of dotted qualified names refering to objects
or attributes of objects contained in the data dictionary given to the
.generate() method.
Qualified names
---------------
Qualified names have two basic forms: a variable reference, or a string
constant. References are a name from the data dictionary with optional
dotted attributes (where each intermediary is an object with attributes,
of course).
Examples:
[varname]
[ob.attr]
["string"]
Simple directives
-----------------
[QUAL_NAME]
This directive is simply replaced by the value of the qualified name.
If the value is a number it's converted to a string before being
outputted. If it is None, nothing is outputted. If it is a python file
object (i.e. any object with a "read" method), it's contents are
outputted. If it is a callback function (any callable python object
is assumed to be a callback function), it is invoked and passed an EZT
Context object as an argument.
[QUAL_NAME QUAL_NAME ...]
If the first value is a callback function, it is invoked with an EZT
Context object as a first argument, and the rest of the values as
additional arguments.
Otherwise, the first value defines a substitution format, specifying
constant text and indices of the additional arguments. The arguments
are substituted and the result is inserted into the output stream.
Example:
["abc %0 def %1 ghi %0" foo bar.baz]
Note that the first value can be any type of qualified name -- a string
constant or a variable reference. Use %% to substitute a percent sign.
Argument indices are 0-based.
[include "filename"] or [include QUAL_NAME]
This directive is replaced by content of the named include file. Note
that a string constant is more efficient -- the target file is compiled
inline. In the variable form, the target file is compiled and executed
at runtime.
Block directives
----------------
[for QUAL_NAME] ... [end]
The text within the [for ...] directive and the corresponding [end]
is repeated for each element in the sequence referred to by the
qualified name in the for directive. Within the for block this
identifiers now refers to the actual item indexed by this loop
iteration.
[if-any QUAL_NAME [QUAL_NAME2 ...]] ... [else] ... [end]
Test if any QUAL_NAME value is not None or an empty string or list.
The [else] clause is optional. CAUTION: Numeric values are
converted to string, so if QUAL_NAME refers to a numeric value 0,
the then-clause is substituted!
[if-index INDEX_FROM_FOR odd] ... [else] ... [end]
[if-index INDEX_FROM_FOR even] ... [else] ... [end]
[if-index INDEX_FROM_FOR first] ... [else] ... [end]
[if-index INDEX_FROM_FOR last] ... [else] ... [end]
[if-index INDEX_FROM_FOR NUMBER] ... [else] ... [end]
These five directives work similar to [if-any], but are only useful
within a [for ...]-block (see above). The odd/even directives are
for example useful to choose different background colors for
adjacent rows in a table. Similar the first/last directives might
be used to remove certain parts (for example "Diff to previous"
doesn't make sense, if there is no previous).
[is QUAL_NAME STRING] ... [else] ... [end]
[is QUAL_NAME QUAL_NAME] ... [else] ... [end]
The [is ...] directive is similar to the other conditional
directives above. But it allows to compare two value references or
a value reference with some constant string.
[define VARIABLE] ... [end]
The [define ...] directive allows you to create and modify template
variables from within the template itself. Essentially, any data
between inside the [define ...] and its matching [end] will be
expanded using the other template parsing and output generation
rules, and then stored as a string value assigned to the variable
VARIABLE. The new (or changed) variable is then available for use
with other mechanisms such as [is ...] or [if-any ...], as long as
they appear later in the template.
[format STRING] ... [end]
The format directive controls how the values substituted into
templates are escaped before they are put into the output stream. It
has no effect on the literal text of the templates, only the output
from [QUAL_NAME ...] directives. STRING can be one of "raw" "html"
"xml" or "uri". The "raw" mode leaves the output unaltered; the "html"
and "xml" modes escape special characters using entity escapes (like
&quot; and &gt;); the "uri" mode escapes characters using hexadecimal
escape sequences (like %20 and %7e).
[format CALLBACK]
Python applications using EZT can provide custom formatters as callback
variables. "[format CALLBACK][QUAL_NAME][end]" is in most cases
equivalent to "[CALLBACK QUAL_NAME]"
"""
#
# Copyright (C) 2001-2007 Greg Stein. All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
#
# This software is maintained by Greg and is available at:
# http://svn.webdav.org/repos/projects/ezt/trunk/
#
import string
import re
from types import StringType, IntType, FloatType, LongType, TupleType
import os
import cgi
import urllib
try:
import cStringIO
except ImportError:
import StringIO
cStringIO = StringIO
#
# Formatting types
#
FORMAT_RAW = 'raw'
FORMAT_HTML = 'html'
FORMAT_XML = 'xml'
FORMAT_URI = 'uri'
#
# This regular expression matches three alternatives:
# expr: DIRECTIVE | BRACKET | COMMENT
# DIRECTIVE: '[' ITEM (whitespace ITEM)* ']
# ITEM: STRING | NAME
# STRING: '"' (not-slash-or-dquote | '\' anychar)* '"'
# NAME: (alphanum | '_' | '-' | '.')+
# BRACKET: '[[]'
# COMMENT: '[#' not-rbracket* ']'
#
# When used with the split() method, the return value will be composed of
# non-matching text and the two paren groups (DIRECTIVE and BRACKET). Since
# the COMMENT matches are not placed into a group, they are considered a
# "splitting" value and simply dropped.
#
_item = r'(?:"(?:[^\\"]|\\.)*"|[-\w.]+)'
_re_parse = re.compile(r'\[(%s(?: +%s)*)\]|(\[\[\])|\[#[^\]]*\]' % (_item, _item))
_re_args = re.compile(r'"(?:[^\\"]|\\.)*"|[-\w.]+')
# block commands and their argument counts
_block_cmd_specs = { 'if-index':2, 'for':1, 'is':2, 'define':1, 'format':1 }
_block_cmds = _block_cmd_specs.keys()
# two regular expresssions for compressing whitespace. the first is used to
# compress any whitespace including a newline into a single newline. the
# second regex is used to compress runs of whitespace into a single space.
_re_newline = re.compile('[ \t\r\f\v]*\n\\s*')
_re_whitespace = re.compile(r'\s\s+')
# this regex is used to substitute arguments into a value. we split the value,
# replace the relevant pieces, and then put it all back together. splitting
# will produce a list of: TEXT ( splitter TEXT )*. splitter will be '%' or
# an integer.
_re_subst = re.compile('%(%|[0-9]+)')
class Template:
def __init__(self, fname=None, compress_whitespace=1,
base_format=FORMAT_RAW):
self.compress_whitespace = compress_whitespace
if fname:
self.parse_file(fname, base_format)
def parse_file(self, fname, base_format=FORMAT_RAW):
"fname -> a string object with pathname of file containg an EZT template."
self.parse(_FileReader(fname), base_format)
def parse(self, text_or_reader, base_format=FORMAT_RAW):
"""Parse the template specified by text_or_reader.
The argument should be a string containing the template, or it should
specify a subclass of ezt.Reader which can read templates. The base
format for printing values is given by base_format.
"""
if not isinstance(text_or_reader, Reader):
# assume the argument is a plain text string
text_or_reader = _TextReader(text_or_reader)
self.program = self._parse(text_or_reader, base_format=base_format)
def generate(self, fp, data):
if hasattr(data, '__getitem__') or callable(getattr(data, 'keys', None)):
# a dictionary-like object was passed. convert it to an
# attribute-based object.
class _data_ob:
def __init__(self, d):
vars(self).update(d)
data = _data_ob(data)
ctx = Context(fp)
ctx.data = data
ctx.for_iterators = { }
ctx.defines = { }
self._execute(self.program, ctx)
def _parse(self, reader, for_names=None, file_args=(), base_format=None):
"""text -> string object containing the template.
This is a private helper function doing the real work for method parse.
It returns the parsed template as a 'program'. This program is a sequence
made out of strings or (function, argument) 2-tuples.
Note: comment directives [# ...] are automatically dropped by _re_parse.
"""
# parse the template program into: (TEXT DIRECTIVE BRACKET)* TEXT
parts = _re_parse.split(reader.text)
program = [ ]
stack = [ ]
if not for_names:
for_names = [ ]
if base_format:
program.append((self._cmd_format, _printers[base_format]))
for i in range(len(parts)):
piece = parts[i]
which = i % 3 # discriminate between: TEXT DIRECTIVE BRACKET
if which == 0:
# TEXT. append if non-empty.
if piece:
if self.compress_whitespace:
piece = _re_whitespace.sub(' ', _re_newline.sub('\n', piece))
program.append(piece)
elif which == 2:
# BRACKET directive. append '[' if present.
if piece:
program.append('[')
elif piece:
# DIRECTIVE is present.
args = _re_args.findall(piece)
cmd = args[0]
if cmd == 'else':
if len(args) > 1:
raise ArgCountSyntaxError(str(args[1:]))
### check: don't allow for 'for' cmd
idx = stack[-1][1]
true_section = program[idx:]
del program[idx:]
stack[-1][3] = true_section
elif cmd == 'end':
if len(args) > 1:
raise ArgCountSyntaxError(str(args[1:]))
# note: true-section may be None
try:
cmd, idx, args, true_section = stack.pop()
except IndexError:
raise UnmatchedEndError()
else_section = program[idx:]
if cmd == 'format':
program.append((self._cmd_end_format, None))
else:
func = getattr(self, '_cmd_' + re.sub('-', '_', cmd))
program[idx:] = [ (func, (args, true_section, else_section)) ]
if cmd == 'for':
for_names.pop()
elif cmd in _block_cmds:
if len(args) > _block_cmd_specs[cmd] + 1:
raise ArgCountSyntaxError(str(args[1:]))
### this assumes arg1 is always a ref unless cmd is 'define'
if cmd != 'define':
args[1] = _prepare_ref(args[1], for_names, file_args)
# handle arg2 for the 'is' command
if cmd == 'is':
args[2] = _prepare_ref(args[2], for_names, file_args)
elif cmd == 'for':
for_names.append(args[1][0]) # append the refname
elif cmd == 'format':
if args[1][0]:
# argument is a variable reference
printer = args[1]
else:
# argument is a string constant referring to built-in printer
printer = _printers.get(args[1][1])
if not printer:
raise UnknownFormatConstantError(str(args[1:]))
program.append((self._cmd_format, printer))
# remember the cmd, current pos, args, and a section placeholder
stack.append([cmd, len(program), args[1:], None])
elif cmd == 'include':
if args[1][0] == '"':
include_filename = args[1][1:-1]
f_args = [ ]
for arg in args[2:]:
f_args.append(_prepare_ref(arg, for_names, file_args))
program.extend(self._parse(reader.read_other(include_filename),
for_names, f_args))
else:
if len(args) != 2:
raise ArgCountSyntaxError(str(args))
program.append((self._cmd_include,
(_prepare_ref(args[1], for_names, file_args),
reader)))
elif cmd == 'if-any':
f_args = [ ]
for arg in args[1:]:
f_args.append(_prepare_ref(arg, for_names, file_args))
stack.append(['if-any', len(program), f_args, None])
else:
# implied PRINT command
f_args = [ ]
for arg in args:
f_args.append(_prepare_ref(arg, for_names, file_args))
program.append((self._cmd_print, f_args))
if stack:
### would be nice to say which blocks...
raise UnclosedBlocksError()
return program
def _execute(self, program, ctx):
"""This private helper function takes a 'program' sequence as created
by the method '_parse' and executes it step by step. strings are written
to the file object 'fp' and functions are called.
"""
for step in program:
if isinstance(step, StringType):
ctx.fp.write(step)
else:
step[0](step[1], ctx)
def _cmd_print(self, valrefs, ctx):
value = _get_value(valrefs[0], ctx)
args = map(lambda valref, ctx=ctx: _get_value(valref, ctx), valrefs[1:])
_write_value(value, args, ctx)
def _cmd_format(self, printer, ctx):
if type(printer) is TupleType:
printer = _get_value(printer, ctx)
ctx.printers.append(printer)
def _cmd_end_format(self, valref, ctx):
ctx.printers.pop()
def _cmd_include(self, (valref, reader), ctx):
fname = _get_value(valref, ctx)
### note: we don't have the set of for_names to pass into this parse.
### I don't think there is anything to do but document it.
self._execute(self._parse(reader.read_other(fname)), ctx)
def _cmd_if_any(self, args, ctx):
"If any value is a non-empty string or non-empty list, then T else F."
(valrefs, t_section, f_section) = args
value = 0
for valref in valrefs:
if _get_value(valref, ctx):
value = 1
break
self._do_if(value, t_section, f_section, ctx)
def _cmd_if_index(self, args, ctx):
((valref, value), t_section, f_section) = args
iterator = ctx.for_iterators[valref[0]]
if value == 'even':
value = iterator.index % 2 == 0
elif value == 'odd':
value = iterator.index % 2 == 1
elif value == 'first':
value = iterator.index == 0
elif value == 'last':
value = iterator.is_last()
else:
value = iterator.index == int(value)
self._do_if(value, t_section, f_section, ctx)
def _cmd_is(self, args, ctx):
((left_ref, right_ref), t_section, f_section) = args
value = _get_value(right_ref, ctx)
value = string.lower(_get_value(left_ref, ctx)) == string.lower(value)
self._do_if(value, t_section, f_section, ctx)
def _do_if(self, value, t_section, f_section, ctx):
if t_section is None:
t_section = f_section
f_section = None
if value:
section = t_section
else:
section = f_section
if section is not None:
self._execute(section, ctx)
def _cmd_for(self, args, ctx):
((valref,), unused, section) = args
list = _get_value(valref, ctx)
if isinstance(list, StringType):
raise NeedSequenceError()
refname = valref[0]
ctx.for_iterators[refname] = iterator = _iter(list)
for unused in iterator:
self._execute(section, ctx)
del ctx.for_iterators[refname]
def _cmd_define(self, args, ctx):
((name,), unused, section) = args
origfp = ctx.fp
ctx.fp = cStringIO.StringIO()
if section is not None:
self._execute(section, ctx)
ctx.defines[name] = ctx.fp.getvalue()
ctx.fp = origfp
def boolean(value):
"Return a value suitable for [if-any bool_var] usage in a template."
if value:
return 'yes'
return None
def _prepare_ref(refname, for_names, file_args):
"""refname -> a string containing a dotted identifier. example:"foo.bar.bang"
for_names -> a list of active for sequences.
Returns a `value reference', a 3-tuple made out of (refname, start, rest),
for fast access later.
"""
# is the reference a string constant?
if refname[0] == '"':
return None, refname[1:-1], None
parts = string.split(refname, '.')
start = parts[0]
rest = parts[1:]
# if this is an include-argument, then just return the prepared ref
if start[:3] == 'arg':
try:
idx = int(start[3:])
except ValueError:
pass
else:
if idx < len(file_args):
orig_refname, start, more_rest = file_args[idx]
if more_rest is None:
# the include-argument was a string constant
return None, start, None
# prepend the argument's "rest" for our further processing
rest[:0] = more_rest
# rewrite the refname to ensure that any potential 'for' processing
# has the correct name
### this can make it hard for debugging include files since we lose
### the 'argNNN' names
if not rest:
return start, start, [ ]
refname = start + '.' + string.join(rest, '.')
if for_names:
# From last to first part, check if this reference is part of a for loop
for i in range(len(parts), 0, -1):
name = string.join(parts[:i], '.')
if name in for_names:
return refname, name, parts[i:]
return refname, start, rest
def _get_value((refname, start, rest), ctx):
"""(refname, start, rest) -> a prepared `value reference' (see above).
ctx -> an execution context instance.
Does a name space lookup within the template name space. Active
for blocks take precedence over data dictionary members with the
same name.
"""
if rest is None:
# it was a string constant
return start
# get the starting object
if ctx.for_iterators.has_key(start):
ob = ctx.for_iterators[start].last_item
elif ctx.defines.has_key(start):
ob = ctx.defines[start]
elif hasattr(ctx.data, start):
ob = getattr(ctx.data, start)
else:
raise UnknownReference(refname)
# walk the rest of the dotted reference
for attr in rest:
try:
ob = getattr(ob, attr)
except AttributeError:
raise UnknownReference(refname)
# make sure we return a string instead of some various Python types
if isinstance(ob, IntType) \
or isinstance(ob, LongType) \
or isinstance(ob, FloatType):
return str(ob)
if ob is None:
return ''
# string or a sequence
return ob
def _write_value(value, args, ctx):
# value is a callback function, generates its own output
if callable(value):
apply(value, [ctx] + list(args))
return
# pop printer in case it recursively calls _write_value
printer = ctx.printers.pop()
try:
# if the value has a 'read' attribute, then it is a stream: copy it
if hasattr(value, 'read'):
while 1:
chunk = value.read(16384)
if not chunk:
break
printer(ctx, chunk)
# value is a substitution pattern
elif args:
parts = _re_subst.split(value)
for i in range(len(parts)):
piece = parts[i]
if i%2 == 1 and piece != '%':
idx = int(piece)
if idx < len(args):
piece = args[idx]
else:
piece = '<undef>'
printer(ctx, piece)
# plain old value, write to output
else:
printer(ctx, value)
finally:
ctx.printers.append(printer)
class Context:
"""A container for the execution context"""
def __init__(self, fp):
self.fp = fp
self.printers = []
def write(self, value, args=()):
_write_value(value, args, self)
class Reader:
"Abstract class which allows EZT to detect Reader objects."
class _FileReader(Reader):
"""Reads templates from the filesystem."""
def __init__(self, fname):
self.text = open(fname, 'rb').read()
self._dir = os.path.dirname(fname)
def read_other(self, relative):
return _FileReader(os.path.join(self._dir, relative))
class _TextReader(Reader):
"""'Reads' a template from provided text."""
def __init__(self, text):
self.text = text
def read_other(self, relative):
raise BaseUnavailableError()
class _Iterator:
"""Specialized iterator for EZT that counts items and can look ahead
Implements standard iterator interface and provides an is_last() method
and two public members:
index - integer index of the current item
last_item - last item returned by next()"""
def __init__(self, sequence):
self._iter = iter(sequence)
def next(self):
if hasattr(self, '_next_item'):
self.last_item = self._next_item
del self._next_item
else:
self.last_item = self._iter.next() # may raise StopIteration
if hasattr(self, 'index'):
self.index = self.index + 1
else:
self.index = 0
return self.last_item
def is_last(self):
"""Return true if the current item is the last in the sequence"""
# the only way we can tell if the current item is last is to call next()
# and store the return value so it doesn't get lost
if not hasattr(self, '_next_item'):
try:
self._next_item = self._iter.next()
except StopIteration:
return 1
return 0
def __iter__(self):
return self
class _OldIterator:
"""Alternate implemention of _Iterator for old Pythons without iterators
This class implements the sequence protocol, instead of the iterator
interface, so it's really not an iterator at all. But it can be used in
python "for" loops as a drop-in replacement for _Iterator. It also provides
the is_last() method and "last_item" and "index" members described in the
_Iterator docstring."""
def __init__(self, sequence):
self._seq = sequence
def __getitem__(self, index):
self.last_item = self._seq[index] # may raise IndexError
self.index = index
return self.last_item
def is_last(self):
return self.index + 1 >= len(self._seq)
try:
iter
except NameError:
_iter = _OldIterator
else:
_iter = _Iterator
class EZTException(Exception):
"""Parent class of all EZT exceptions."""
class ArgCountSyntaxError(EZTException):
"""A bracket directive got the wrong number of arguments."""
class UnknownReference(EZTException):
"""The template references an object not contained in the data dictionary."""
class NeedSequenceError(EZTException):
"""The object dereferenced by the template is no sequence (tuple or list)."""
class UnclosedBlocksError(EZTException):
"""This error may be simply a missing [end]."""
class UnmatchedEndError(EZTException):
"""This error may be caused by a misspelled if directive."""
class BaseUnavailableError(EZTException):
"""Base location is unavailable, which disables includes."""
class UnknownFormatConstantError(EZTException):
"""The format specifier is an unknown value."""
def _raw_printer(ctx, s):
ctx.fp.write(s)
def _html_printer(ctx, s):
ctx.fp.write(cgi.escape(s))
def _uri_printer(ctx, s):
ctx.fp.write(urllib.quote(s))
_printers = {
FORMAT_RAW : _raw_printer,
FORMAT_HTML : _html_printer,
FORMAT_XML : _html_printer,
FORMAT_URI : _uri_printer,
}
# --- standard test environment ---
def test_parse():
assert _re_parse.split('[a]') == ['', '[a]', None, '']
assert _re_parse.split('[a] [b]') == \
['', '[a]', None, ' ', '[b]', None, '']
assert _re_parse.split('[a c] [b]') == \
['', '[a c]', None, ' ', '[b]', None, '']
assert _re_parse.split('x [a] y [b] z') == \
['x ', '[a]', None, ' y ', '[b]', None, ' z']
assert _re_parse.split('[a "b" c "d"]') == \
['', '[a "b" c "d"]', None, '']
assert _re_parse.split(r'["a \"b[foo]" c.d f]') == \
['', '["a \\"b[foo]" c.d f]', None, '']
def _test(argv):
import doctest, ezt
verbose = "-v" in argv
return doctest.testmod(ezt, verbose=verbose)
if __name__ == "__main__":
# invoke unit test for this module:
import sys
sys.exit(_test(sys.argv)[0])