Compare commits

..

1 Commits

Author SHA1 Message Date
Vitaliy Filippov c3ec6dd3b9 Add postponed send loop to QEMU driver
Test / test_interrupted_rebalance (push) Successful in 7m24s Details
Test / test_interrupted_rebalance_imm (push) Failing after 10m5s Details
Test / test_interrupted_rebalance_ec (push) Failing after 10m6s Details
Test / test_interrupted_rebalance_ec_imm (push) Failing after 10m15s Details
Test / test_failure_domain (push) Successful in 7s Details
Test / test_snapshot (push) Successful in 18s Details
Test / test_snapshot_ec (push) Successful in 18s Details
Test / test_minsize_1 (push) Successful in 11s Details
Test / test_move_reappear (push) Successful in 17s Details
Test / test_rm (push) Successful in 11s Details
Test / test_snapshot_chain (push) Successful in 1m2s Details
Test / test_snapshot_chain_ec (push) Successful in 2m14s Details
Test / test_snapshot_down (push) Successful in 20s Details
Test / test_snapshot_down_ec (push) Successful in 20s Details
Test / test_splitbrain (push) Successful in 13s Details
Test / test_rebalance_verify (push) Successful in 3m10s Details
Test / test_rebalance_verify_imm (push) Successful in 3m3s Details
Test / test_rebalance_verify_ec (push) Successful in 3m26s Details
Test / test_rebalance_verify_ec_imm (push) Successful in 4m12s Details
Test / test_write (push) Successful in 40s Details
Test / test_write_xor (push) Successful in 55s Details
Test / test_write_no_same (push) Successful in 14s Details
Test / test_heal_pg_size_2 (push) Successful in 3m51s Details
Test / test_heal_ec (push) Failing after 10m14s Details
Test / test_scrub (push) Successful in 59s Details
Test / test_scrub_zero_osd_2 (push) Successful in 45s Details
Test / test_scrub_xor (push) Successful in 42s Details
Test / test_scrub_pg_size_3 (push) Successful in 1m2s Details
Test / test_scrub_pg_size_6_pg_minsize_4_osd_count_6_ec (push) Successful in 50s Details
Test / test_scrub_ec (push) Successful in 34s Details
2023-07-03 02:29:01 +03:00
463 changed files with 7817 additions and 48186 deletions

View File

@ -22,7 +22,7 @@ RUN apt-get update
RUN apt-get -y install etcd qemu-system-x86 qemu-block-extra qemu-utils fio libasan5 \ RUN apt-get -y install etcd qemu-system-x86 qemu-block-extra qemu-utils fio libasan5 \
liburing1 liburing-dev libgoogle-perftools-dev devscripts libjerasure-dev cmake libibverbs-dev libisal-dev liburing1 liburing-dev libgoogle-perftools-dev devscripts libjerasure-dev cmake libibverbs-dev libisal-dev
RUN apt-get -y build-dep fio qemu=`dpkg -s qemu-system-x86|grep ^Version:|awk '{print $2}'` RUN apt-get -y build-dep fio qemu=`dpkg -s qemu-system-x86|grep ^Version:|awk '{print $2}'`
RUN apt-get update && apt-get -y install jq lp-solve sudo nfs-common fdisk parted RUN apt-get -y install jq lp-solve sudo
RUN apt-get --download-only source fio qemu=`dpkg -s qemu-system-x86|grep ^Version:|awk '{print $2}'` RUN apt-get --download-only source fio qemu=`dpkg -s qemu-system-x86|grep ^Version:|awk '{print $2}'`
RUN set -ex; \ RUN set -ex; \

View File

@ -16,7 +16,6 @@ env:
BUILDENV_IMAGE: git.yourcmc.ru/vitalif/vitastor/buildenv BUILDENV_IMAGE: git.yourcmc.ru/vitalif/vitastor/buildenv
TEST_IMAGE: git.yourcmc.ru/vitalif/vitastor/test TEST_IMAGE: git.yourcmc.ru/vitalif/vitastor/test
OSD_ARGS: '--etcd_quick_timeout 2000' OSD_ARGS: '--etcd_quick_timeout 2000'
USE_RAMDISK: 1
concurrency: concurrency:
group: ci-${{ github.ref }} group: ci-${{ github.ref }}
@ -65,13 +64,6 @@ jobs:
# leak sanitizer sometimes crashes # leak sanitizer sometimes crashes
- run: cd /root/vitastor/build && ASAN_OPTIONS=detect_leaks=0 make -j16 test - run: cd /root/vitastor/build && ASAN_OPTIONS=detect_leaks=0 make -j16 test
npm_lint:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- run: cd /root/vitastor/mon && npm run lint
test_add_osd: test_add_osd:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: build needs: build
@ -198,24 +190,6 @@ jobs:
echo "" echo ""
done done
test_etcd_fail_antietcd:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: ANTIETCD=1 /root/vitastor/tests/test_etcd_fail.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_interrupted_rebalance: test_interrupted_rebalance:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: build needs: build
@ -288,24 +262,6 @@ jobs:
echo "" echo ""
done done
test_create_halfhost:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_create_halfhost.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_failure_domain: test_failure_domain:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: build needs: build
@ -439,7 +395,7 @@ jobs:
steps: steps:
- name: Run test - name: Run test
id: test id: test
timeout-minutes: 6 timeout-minutes: 3
run: SCHEME=ec /root/vitastor/tests/test_snapshot_chain.sh run: SCHEME=ec /root/vitastor/tests/test_snapshot_chain.sh
- name: Print logs - name: Print logs
if: always() && steps.test.outcome == 'failure' if: always() && steps.test.outcome == 'failure'
@ -576,60 +532,6 @@ jobs:
echo "" echo ""
done done
test_dd:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_dd.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_root_node:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_root_node.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_switch_primary:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_switch_primary.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_write: test_write:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: build needs: build
@ -720,276 +622,6 @@ jobs:
echo "" echo ""
done done
test_heal_antietcd:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: ANTIETCD=1 /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_32k_dmj:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_32k_dmj OSD_ARGS="--data_csum_type crc32c --csum_block_size 32k --inmemory_metadata false --inmemory_journal false" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_32k_dj:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_32k_dj OSD_ARGS="--data_csum_type crc32c --csum_block_size 32k --inmemory_journal false" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_32k:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_32k OSD_ARGS="--data_csum_type crc32c --csum_block_size 32k" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_4k_dmj:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_4k_dmj OSD_ARGS="--data_csum_type crc32c --inmemory_metadata false --inmemory_journal false" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_4k_dj:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_4k_dj OSD_ARGS="--data_csum_type crc32c --inmemory_journal false" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_heal_csum_4k:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 10
run: TEST_NAME=csum_4k OSD_ARGS="--data_csum_type crc32c" OFFSET_ARGS=$OSD_ARGS /root/vitastor/tests/test_heal.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_resize:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_resize.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_resize_auto:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_resize_auto.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_snapshot_pool2:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_snapshot_pool2.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_osd_tags:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_osd_tags.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_enospc:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_enospc.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_enospc_xor:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: SCHEME=xor /root/vitastor/tests/test_enospc.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_enospc_imm:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: IMMEDIATE_COMMIT=1 /root/vitastor/tests/test_enospc.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_enospc_imm_xor:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: IMMEDIATE_COMMIT=1 SCHEME=xor /root/vitastor/tests/test_enospc.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done
test_scrub: test_scrub:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: build needs: build
@ -1098,21 +730,3 @@ jobs:
echo "" echo ""
done done
test_nfs:
runs-on: ubuntu-latest
needs: build
container: ${{env.TEST_IMAGE}}:${{github.sha}}
steps:
- name: Run test
id: test
timeout-minutes: 3
run: /root/vitastor/tests/test_nfs.sh
- name: Print logs
if: always() && steps.test.outcome == 'failure'
run: |
for i in /root/vitastor/testdata/*.log /root/vitastor/testdata/*.txt; do
echo "-------- $i --------"
cat $i
echo ""
done

View File

@ -7,8 +7,7 @@ for my $line (<>)
if ($line =~ /\.\/(test_[^\.]+)/s) if ($line =~ /\.\/(test_[^\.]+)/s)
{ {
chomp $line; chomp $line;
my $base_name = $1; my $test_name = $1;
my $test_name = $base_name;
my $timeout = 3; my $timeout = 3;
if ($test_name eq 'test_etcd_fail' || $test_name eq 'test_heal' || $test_name eq 'test_add_osd' || if ($test_name eq 'test_etcd_fail' || $test_name eq 'test_heal' || $test_name eq 'test_add_osd' ||
$test_name eq 'test_interrupted_rebalance' || $test_name eq 'test_rebalance_verify') $test_name eq 'test_interrupted_rebalance' || $test_name eq 'test_rebalance_verify')
@ -17,12 +16,7 @@ for my $line (<>)
} }
while ($line =~ /([^\s=]+)=(\S+)/gs) while ($line =~ /([^\s=]+)=(\S+)/gs)
{ {
if ($1 eq 'TEST_NAME') if ($1 eq 'SCHEME' && $2 eq 'ec')
{
$test_name = $base_name.'_'.$2;
last;
}
elsif ($1 eq 'SCHEME' && $2 eq 'ec')
{ {
$test_name .= '_ec'; $test_name .= '_ec';
} }
@ -34,19 +28,11 @@ for my $line (<>)
{ {
$test_name .= '_imm'; $test_name .= '_imm';
} }
elsif ($1 eq 'ANTIETCD')
{
$test_name .= '_antietcd';
}
else else
{ {
$test_name .= '_'.lc($1).'_'.$2; $test_name .= '_'.lc($1).'_'.$2;
} }
} }
if ($test_name eq 'test_snapshot_chain_ec')
{
$timeout = 6;
}
$line =~ s!\./test_!/root/vitastor/tests/test_!; $line =~ s!\./test_!/root/vitastor/tests/test_!;
# Gitea CI doesn't support artifacts yet, lol # Gitea CI doesn't support artifacts yet, lol
#- name: Upload results #- name: Upload results

13
.gitignore vendored
View File

@ -3,3 +3,16 @@
package-lock.json package-lock.json
fio fio
qemu qemu
osd
stub_osd
stub_uring_osd
stub_bench
osd_test
osd_peering_pg_test
dump_journal
nbd_proxy
rm_inode
test_allocator
test_blockstore
test_shit
osd_rmw_test

115
CLA-en.md
View File

@ -1,115 +0,0 @@
## Contributor License Agreement
> This Agreement is made in the Russian and English languages. **The English
text of Agreement is for informational purposes only** and is not binding
for the Parties.
>
> In the event of a conflict between the provisions of the Russian and
English versions of this Agreement, the **Russian version shall prevail**.
>
> Russian version is published at https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-ru.md
This document represents the offer of Filippov Vitaliy Vladimirovich
("Author"), author and copyright holder of Vitastor software ("Program"),
acknowledged by a certificate of Federal Service for Intellectual
Property of Russian Federation (Rospatent) # 2021617829 dated 20 May 2021,
to "Contributors" to conclude this license agreement as follows
("Agreement" or "Offer").
In accordance with Art. 435, Art. 438 of the Civil Code of the Russian
Federation, this Agreement is an offer and in case of acceptance of the
offer, an agreement is considered concluded on the conditions specified
in the offer.
1. Applicable Terms. \
1.1. "Official Repository" shall mean the computer storage, operated by
the Author, containing all prior and future versions of the Source
Code of the Program, at Internet addresses https://git.yourcmc.ru/vitalif/vitastor/
or https://github.com/vitalif/vitastor/. \
1.2. "Contributions" shall mean results of intellectual activity
(including, but not limited to, source code, libraries, components,
texts, documentation) which can be software or elements of the software
and which are provided by Contributors to the Author for inclusion
in the Program. \
1.3. "Contributor" shall mean a person who provides Contributions to
the Author and agrees with all provisions of this Agreement.
A Сontributor can be: 1) an individual; or 2) a legal entity or an
individual entrepreneur in case when an individual provides Contributions
on behalf of third parties, including on behalf of his employer.
2. Subject of the Agreement. \
2.1. Subject of the Agreement shall be the Contributions sent to the Author by Contributors. \
2.2. The Contributor grants to the Author the right to use Contributions at his own
discretion and without any necessity to get a prior approval from Contributor or
any other third party in any way, under a simple (non-exclusive), royalty-free,
irrevocable license throughout the world by all means not contrary to law, in whole
or as a part of the Program, or other open-source or closed-source computer programs,
products or services (hereinafter -- the "License"), including, but not limited to: \
2.2.1. to execute Contributions and use them for any tasks; \
2.2.2. to publish and distribute Contributions in modified or unmodified form and/or to rent them; \
2.2.3. to modify Contributions, add comments, illustrations or any explanations to Contributions while using them; \
2.2.4. to create other results of intellectual activity based on Contributions, including derivative works and composite works; \
2.2.5. to translate Contributions into other languages, including other programming languages; \
2.2.6. to carry out rental and public display of Contributions; \
2.2.7. to use Contributions under the trade name and/or any trademark or any other label, or without it, as the Author thinks fit; \
2.3. The Contributor grants to the Author the right to sublicense any of the aforementioned
rights to third parties on any terms at the Author's discretion. \
2.4. The License is provided for the entire duration of Contributor's
exclusive intellectual property rights to the Contributions. \
2.5. The Contributor grants to the Author the right to decide how and where to mention,
or to not mention at all, the fact of his authorship, name, nickname and/or company
details when including Contributions into the Program or in any other computer
programs, products or services.
3. Acceptance of the Offer \
3.1. The Contributor may provide Contributions to the Author in the form of
a "Pull Request" in an Official Repository of the Program or by any
other electronic means of communication, including, but not limited to,
E-mail or messenger applications. \
3.2. The acceptance of the Offer shall be the fact of provision of Contributions
to the Author by the Contributor by any means with the following remark:
“I accept Vitastor CLA agreement: https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-en.md”
or “Я принимаю соглашение Vitastor CLA: https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-ru.md”. \
3.3. Date of acceptance of the Offer shall be the date of such provision.
4. Rights and obligations of the parties. \
4.1. The Contributor reserves the right to use Contributions by any lawful means
not contrary to this Agreement. \
4.2. The Author has the right to refuse to include Contributions into the Program
at any moment with no explanation to the Contributor.
5. Representations and Warranties. \
5.1. The person providing Contributions for the purpose of their inclusion
in the Program represents and warrants that he is the Contributor
or legally acts on the Contributor's behalf. Name or company details
of the Contributor shall be provided with the Contribution at the moment
of their provision to the Author. \
5.2. The Contributor represents and warrants that he legally owns exclusive
intellectual property rights to the Contributions. \
5.3. The Contributor represents and warrants that any further use of
Contributions by the Author as provided by Contributor under the terms
of the Agreement does not infringe on intellectual and other rights and
legitimate interests of third parties. \
5.4. The Contributor represents and warrants that he has all rights and legal
capacity needed to accept this Offer; \
5.5. The Contributor represents and warrants that Contributions don't
contain malware or any information considered illegal under the law
of Russian Federation.
6. Termination of the Agreement \
6.1. The Agreement may be terminated at will of both Author and Contributor,
formalised in the written form or if the Agreement is terminated on
reasons prescribed by the law of Russian Federation.
7. Final Clauses \
7.1. The Contributor may optionally sign the Agreement in the written form. \
7.2. The Agreement is deemed to become effective from the Date of signing of
the Agreement and until the expiration of Contributor's exclusive
intellectual property rights to the Contributions. \
7.3. The Author may unilaterally alter the Agreement without informing Contributors.
The new version of the document shall come into effect 3 (three) days after
being published in the Official Repository of the Program at Internet address
[https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-en.md](https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-en.md).
Contributors should keep informed about the actual version of the Agreement themselves. \
7.4. If the Author and the Contributor fail to agree on disputable issues,
disputes shall be referred to the Moscow Arbitration court.

108
CLA-ru.md
View File

@ -1,108 +0,0 @@
## Лицензионное соглашение с участником
> Данная Оферта написана в Русской и Английской версиях. **Версия на английском
языке предоставляется в информационных целях** и не связывает стороны договора.
>
> В случае несоответствий между положениями Русской и Английской версий Договора,
**Русская версия имеет приоритет**.
>
> Английская версия опубликована по адресу https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-en.md
Настоящий договор-оферта (далее по тексту Оферта, Договор) адресована физическим
и юридическим лицам (далее Участникам) и является официальным публичным предложением
Филиппова Виталия Владимировича (далее Автора) программного обеспечения Vitastor,
свидетельство Федеральной службы по интеллектуальной собственности (Роспатент) № 2021617829
от 20 мая 2021 г. (далее Программа) о нижеследующем:
1. Термины и определения \
1.1. Репозиторий электронное хранилище, содержащее исходный код Программы. \
1.2. Доработка результат интеллектуальной деятельности Участника, включающий
в себя изменения или дополнения к исходному коду Программы, которые Участник
желает включить в состав Программы для дальнейшего использования и распространения
Автором и для этого направляет их Автору. \
1.3. Участник физическое или юридическое лицо, вносящее Доработки в код Программы. \
1.4. ГК РФ Гражданский кодекс Российской Федерации.
2. Предмет оферты \
2.1. Предметом настоящей оферты являются Доработки, отправляемые Участником Автору. \
2.2. Участник предоставляет Автору право использовать Доработки по собственному усмотрению
и без необходимости предварительного согласования с Участником или иным третьим лицом
на условиях простой (неисключительной) безвозмездной безотзывной лицензии, полностью
или фрагментарно, в составе Программы или других программ, продуктов или сервисов
как с открытым, так и с закрытым исходным кодом, любыми способами, не противоречащими
закону, включая, но не ограничиваясь следующими: \
2.2.1. Запускать и использовать Доработки для выполнения любых задач; \
2.2.2. Распространять, импортировать и доводить Доработки до всеобщего сведения; \
2.2.3. Вносить в Доработки изменения, сокращения и дополнения, снабжать Доработки
при их использовании комментариями, иллюстрациями или пояснениями; \
2.2.4. Создавать на основе Доработок иные результаты интеллектуальной деятельности,
в том числе производные и составные произведения; \
2.2.5. Переводить Доработки на другие языки, в том числе на другие языки программирования; \
2.2.6. Осуществлять прокат и публичный показ Доработок; \
2.2.7. Использовать Доработки под любым фирменным наименованием, товарным знаком
(знаком обслуживания) или иным обозначением, или без такового. \
2.3. Участник предоставляет Автору право сублицензировать полученные права на Доработки
третьим лицам на любых условиях на усмотрение Автора. \
2.4. Участник предоставляет Автору права на Доработки на территории всего мира. \
2.5. Участник предоставляет Автору права на весь срок действия исключительного права
Участника на Доработки. \
2.6. Участник предоставляет Автору права на Доработки на безвозмездной основе. \
2.7. Участник разрешает Автору самостоятельно определять порядок, способ и
место указания его имени, реквизитов и/или псевдонима при включении
Доработок в состав Программы или других программ, продуктов или сервисов.
3. Акцепт Оферты \
3.1. Участник может передавать Доработки в адрес Автора через зеркала официального
Репозитория Программы по адресам https://git.yourcmc.ru/vitalif/vitastor/ или
https://github.com/vitalif/vitastor/ в виде “запроса на слияние” (pull request),
либо в письменном виде или с помощью любых других электронных средств коммуникации,
например, электронной почты или мессенджеров. \
3.2. Факт передачи Участником Доработок в адрес Автора любым способом с одной из пометок
“I accept Vitastor CLA agreement: https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-en.md”
или “Я принимаю соглашение Vitastor CLA: https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-ru.md”
является полным и безоговорочным акцептом (принятием) Участником условий настоящей
Оферты, т.е. Участник считается ознакомившимся с настоящим публичным договором и
в соответствии с ГК РФ признается лицом, вступившим с Автором в договорные отношения
на основании настоящей Оферты. \
3.3. Датой акцептирования настоящей Оферты считается дата такой передачи.
4. Права и обязанности Сторон \
4.1. Участник сохраняет за собой право использовать Доработки любым законным
способом, не противоречащим настоящему Договору. \
4.2. Автор вправе отказать Участнику во включении Доработок в состав
Программы без объяснения причин в любой момент по своему усмотрению.
5. Гарантии и заверения \
5.1. Лицо, направляющее Доработки для целей их включения в состав Программы,
гарантирует, что является Участником или представителем Участника. Имя или реквизиты
Участника должны быть указаны при их передаче в адрес Автора Программы. \
5.2. Участник гарантирует, что является законным обладателем исключительных прав
на Доработки. \
5.3. Участник гарантирует, что на момент акцептирования настоящей Оферты ему
ничего не известно (и не могло быть известно) о правах третьих лиц на
передаваемые Автору Доработки или их часть, которые могут быть нарушены
в связи с передачей Доработок по настоящему Договору. \
5.4. Участник гарантирует, что является дееспособным лицом и обладает всеми
необходимыми правами для заключения Договора. \
5.5. Участник гарантирует, что Доработки не содержат вредоносного ПО, а также
любой другой информации, запрещённой к распространению по законам Российской
Федерации.
6. Прекращение действия оферты \
6.1. Действие настоящего договора может быть прекращено по соглашению сторон,
оформленному в письменном виде, а также вследствие его расторжения по основаниям,
предусмотренным законом.
7. Заключительные положения \
7.1. Участник вправе по желанию подписать настоящий Договор в письменном виде. \
7.2. Настоящий договор действует с момента его заключения и до истечения срока
действия исключительных прав Участника на Доработки. \
7.3. Автор имеет право в одностороннем порядке вносить изменения и дополнения в договор
без специального уведомления об этом Участников. Новая редакция документа вступает
в силу через 3 (Три) календарных дня со дня опубликования в официальном Репозитории
Программы по адресу в сети Интернет
[https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-ru.md](https://git.yourcmc.ru/vitalif/vitastor/src/branch/master/CLA-ru.md).
Участники самостоятельно отслеживают действующие условия Оферты. \
7.4. Все споры, возникающие между сторонами в процессе их взаимодействия по настоящему
договору, решаются путём переговоров. В случае невозможности урегулирования споров
переговорным порядком стороны разрешают их в Арбитражном суде г.Москвы.

View File

@ -2,6 +2,6 @@ cmake_minimum_required(VERSION 2.8.12)
project(vitastor) project(vitastor)
set(VITASTOR_VERSION "1.9.3") set(VERSION "0.9.2")
add_subdirectory(src) add_subdirectory(src)

View File

@ -1,4 +1,4 @@
# Vitastor ## Vitastor
[Read English version](README.md) [Read English version](README.md)
@ -6,8 +6,8 @@
Вернём былую скорость кластерному блочному хранилищу! Вернём былую скорость кластерному блочному хранилищу!
Vitastor - распределённая блочная и файловая SDS (программная СХД), прямой аналог Ceph RBD и CephFS, Vitastor - распределённая блочная SDS (программная СХД), прямой аналог Ceph RBD и
а также внутренних СХД популярных облачных провайдеров. Однако, в отличие от них, Vitastor внутренних СХД популярных облачных провайдеров. Однако, в отличие от них, Vitastor
быстрый и при этом простой. Только пока маленький :-). быстрый и при этом простой. Только пока маленький :-).
Vitastor архитектурно похож на Ceph, что означает атомарность и строгую консистентность, Vitastor архитектурно похож на Ceph, что означает атомарность и строгую консистентность,
@ -15,14 +15,14 @@ Vitastor архитектурно похож на Ceph, что означает
и автоматическое распределение данных по любому числу дисков любого размера с настраиваемыми схемами и автоматическое распределение данных по любому числу дисков любого размера с настраиваемыми схемами
избыточности - репликацией или с произвольными кодами коррекции ошибок. избыточности - репликацией или с произвольными кодами коррекции ошибок.
Vitastor нацелен в первую очередь на SSD и SSD+HDD кластеры с как минимум 10 Гбит/с сетью, поддерживает Vitastor нацелен на SSD и SSD+HDD кластеры с как минимум 10 Гбит/с сетью, поддерживает
TCP и RDMA и на хорошем железе может достигать задержки 4 КБ чтения и записи на уровне ~0.1 мс, TCP и RDMA и на хорошем железе может достигать задержки 4 КБ чтения и записи на уровне ~0.1 мс,
что примерно в 10 раз быстрее, чем Ceph и другие популярные программные СХД. что примерно в 10 раз быстрее, чем Ceph и другие популярные программные СХД.
Vitastor поддерживает QEMU-драйвер, протоколы NBD и NFS, драйверы OpenStack, OpenNebula, Proxmox, Kubernetes. Vitastor поддерживает QEMU-драйвер, протоколы NBD и NFS, драйверы OpenStack, Proxmox, Kubernetes.
Другие драйверы могут также быть легко реализованы. Другие драйверы могут также быть легко реализованы.
Подробности смотрите в документации по ссылкам. Можете начать отсюда: [Быстрый старт](docs/intro/quickstart.ru.md). Подробности смотрите в документации по ссылкам ниже.
## Презентации и записи докладов ## Презентации и записи докладов
@ -42,7 +42,6 @@ Vitastor поддерживает QEMU-драйвер, протоколы NBD и
- Установка - Установка
- [Пакеты](docs/installation/packages.ru.md) - [Пакеты](docs/installation/packages.ru.md)
- [Proxmox](docs/installation/proxmox.ru.md) - [Proxmox](docs/installation/proxmox.ru.md)
- [OpenNebula](docs/installation/opennebula.ru.md)
- [OpenStack](docs/installation/openstack.ru.md) - [OpenStack](docs/installation/openstack.ru.md)
- [Kubernetes CSI](docs/installation/kubernetes.ru.md) - [Kubernetes CSI](docs/installation/kubernetes.ru.md)
- [Сборка из исходных кодов](docs/installation/source.ru.md) - [Сборка из исходных кодов](docs/installation/source.ru.md)
@ -51,7 +50,6 @@ Vitastor поддерживает QEMU-драйвер, протоколы NBD и
- Параметры - Параметры
- [Общие](docs/config/common.ru.md) - [Общие](docs/config/common.ru.md)
- [Сетевые](docs/config/network.ru.md) - [Сетевые](docs/config/network.ru.md)
- [Клиентский код](docs/config/client.ru.md)
- [Глобальные дисковые параметры](docs/config/layout-cluster.ru.md) - [Глобальные дисковые параметры](docs/config/layout-cluster.ru.md)
- [Дисковые параметры OSD](docs/config/layout-osd.ru.md) - [Дисковые параметры OSD](docs/config/layout-osd.ru.md)
- [Прочие параметры OSD](docs/config/osd.ru.md) - [Прочие параметры OSD](docs/config/osd.ru.md)
@ -64,13 +62,11 @@ Vitastor поддерживает QEMU-драйвер, протоколы NBD и
- [fio](docs/usage/fio.ru.md) для тестов производительности - [fio](docs/usage/fio.ru.md) для тестов производительности
- [NBD](docs/usage/nbd.ru.md) для монтирования ядром - [NBD](docs/usage/nbd.ru.md) для монтирования ядром
- [QEMU и qemu-img](docs/usage/qemu.ru.md) - [QEMU и qemu-img](docs/usage/qemu.ru.md)
- [NFS](docs/usage/nfs.ru.md) кластерная файловая система и псевдо-ФС прокси - [NFS](docs/usage/nfs.ru.md)-прокси для VMWare и подобных
- [Администрирование](docs/usage/admin.ru.md)
- Производительность - Производительность
- [Понимание сути производительности](docs/performance/understanding.ru.md) - [Понимание сути производительности](docs/performance/understanding.ru.md)
- [Теоретический максимум](docs/performance/theoretical.ru.md) - [Теоретический максимум](docs/performance/theoretical.ru.md)
- [Пример сравнения с Ceph](docs/performance/comparison1.ru.md) - [Пример сравнения с Ceph](docs/performance/comparison1.ru.md)
- [Более новый тест Vitastor 1.3.1](docs/performance/bench2.ru.md)
## Автор и лицензия ## Автор и лицензия

View File

@ -6,23 +6,23 @@
Make Clustered Block Storage Fast Again. Make Clustered Block Storage Fast Again.
Vitastor is a distributed block and file SDS, direct replacement of Ceph RBD and CephFS, Vitastor is a distributed block SDS, direct replacement of Ceph RBD and internal SDS's
and also internal SDS's of public clouds. However, in contrast to them, Vitastor is fast of public clouds. However, in contrast to them, Vitastor is fast and simple at the same time.
and simple at the same time. The only thing is it's slightly young :-). The only thing is it's slightly young :-).
Vitastor is architecturally similar to Ceph which means strong consistency, Vitastor is architecturally similar to Ceph which means strong consistency,
primary-replication, symmetric clustering and automatic data distribution over any primary-replication, symmetric clustering and automatic data distribution over any
number of drives of any size with configurable redundancy (replication or erasure codes/XOR). number of drives of any size with configurable redundancy (replication or erasure codes/XOR).
Vitastor targets primarily SSD and SSD+HDD clusters with at least 10 Gbit/s network, Vitastor targets SSD and SSD+HDD clusters with at least 10 Gbit/s network, supports
supports TCP and RDMA and may achieve 4 KB read and write latency as low as ~0.1 ms TCP and RDMA and may achieve 4 KB read and write latency as low as ~0.1 ms
with proper hardware which is ~10 times faster than other popular SDS's like Ceph with proper hardware which is ~10 times faster than other popular SDS's like Ceph
or internal systems of public clouds. or internal systems of public clouds.
Vitastor supports QEMU, NBD, NFS protocols, OpenStack, OpenNebula, Proxmox, Kubernetes drivers. Vitastor supports QEMU, NBD, NFS protocols, OpenStack, Proxmox, Kubernetes drivers.
More drivers may be created easily. More drivers may be created easily.
Read more details in the documentation. You can start from here: [Quick Start](docs/intro/quickstart.en.md). Read more details below in the documentation.
## Talks and presentations ## Talks and presentations
@ -42,7 +42,6 @@ Read more details in the documentation. You can start from here: [Quick Start](d
- Installation - Installation
- [Packages](docs/installation/packages.en.md) - [Packages](docs/installation/packages.en.md)
- [Proxmox](docs/installation/proxmox.en.md) - [Proxmox](docs/installation/proxmox.en.md)
- [OpenNebula](docs/installation/opennebula.en.md)
- [OpenStack](docs/installation/openstack.en.md) - [OpenStack](docs/installation/openstack.en.md)
- [Kubernetes CSI](docs/installation/kubernetes.en.md) - [Kubernetes CSI](docs/installation/kubernetes.en.md)
- [Building from Source](docs/installation/source.en.md) - [Building from Source](docs/installation/source.en.md)
@ -51,7 +50,6 @@ Read more details in the documentation. You can start from here: [Quick Start](d
- Parameter Reference - Parameter Reference
- [Common](docs/config/common.en.md) - [Common](docs/config/common.en.md)
- [Network](docs/config/network.en.md) - [Network](docs/config/network.en.md)
- [Client](docs/config/client.en.md)
- [Global Disk Layout](docs/config/layout-cluster.en.md) - [Global Disk Layout](docs/config/layout-cluster.en.md)
- [OSD Disk Layout](docs/config/layout-osd.en.md) - [OSD Disk Layout](docs/config/layout-osd.en.md)
- [OSD Runtime Parameters](docs/config/osd.en.md) - [OSD Runtime Parameters](docs/config/osd.en.md)
@ -64,13 +62,11 @@ Read more details in the documentation. You can start from here: [Quick Start](d
- [fio](docs/usage/fio.en.md) for benchmarks - [fio](docs/usage/fio.en.md) for benchmarks
- [NBD](docs/usage/nbd.en.md) for kernel mounts - [NBD](docs/usage/nbd.en.md) for kernel mounts
- [QEMU and qemu-img](docs/usage/qemu.en.md) - [QEMU and qemu-img](docs/usage/qemu.en.md)
- [NFS](docs/usage/nfs.en.md) clustered file system and pseudo-FS proxy - [NFS](docs/usage/nfs.en.md) emulator for VMWare and similar
- [Administration](docs/usage/admin.en.md)
- Performance - Performance
- [Understanding storage performance](docs/performance/understanding.en.md) - [Understanding storage performance](docs/performance/understanding.en.md)
- [Theoretical performance](docs/performance/theoretical.en.md) - [Theoretical performance](docs/performance/theoretical.en.md)
- [Example comparison with Ceph](docs/performance/comparison1.en.md) - [Example comparison with Ceph](docs/performance/comparison1.en.md)
- [Newer benchmark of Vitastor 1.3.1](docs/performance/bench2.en.md)
## Author and License ## Author and License

View File

@ -1,6 +1,6 @@
#!/bin/bash #!/bin/bash
gcc -I. -E -o fio_headers.i src/util/fio_headers.h gcc -I. -E -o fio_headers.i src/fio_headers.h
rm -rf fio-copy rm -rf fio-copy
for i in `grep -Po 'fio/[^"]+' fio_headers.i | sort | uniq`; do for i in `grep -Po 'fio/[^"]+' fio_headers.i | sort | uniq`; do

View File

@ -5,7 +5,7 @@
#cd b/qemu; make qapi #cd b/qemu; make qapi
gcc -I qemu/b/qemu `pkg-config glib-2.0 --cflags` \ gcc -I qemu/b/qemu `pkg-config glib-2.0 --cflags` \
-I qemu/include -E -o qemu_driver.i src/client/qemu_driver.c -I qemu/include -E -o qemu_driver.i src/qemu_driver.c
rm -rf qemu-copy rm -rf qemu-copy
for i in `grep -Po 'qemu/[^"]+' qemu_driver.i | sort | uniq`; do for i in `grep -Po 'qemu/[^"]+' qemu_driver.i | sort | uniq`; do

@ -1 +1 @@
Subproject commit 8de8b467acbca50cfd8835c20e0e379110f3b32b Subproject commit 45e6d1f13196a0824e2089a586c53b9de0283f17

View File

@ -1,15 +1,14 @@
# Compile stage # Compile stage
FROM golang:bookworm AS build FROM golang:buster AS build
ADD go.sum go.mod /app/ ADD go.sum go.mod /app/
RUN cd /app; CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go mod download -x RUN cd /app; CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go mod download -x
ADD . /app ADD . /app
RUN perl -i -e '$/ = undef; while(<>) { s/\n\s*(\{\s*\n)/$1\n/g; s/\}(\s*\n\s*)else\b/$1} else/g; print; }' `find /app -name '*.go'` && \ RUN perl -i -e '$/ = undef; while(<>) { s/\n\s*(\{\s*\n)/$1\n/g; s/\}(\s*\n\s*)else\b/$1} else/g; print; }' `find /app -name '*.go'`
cd /app && \ RUN cd /app; CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go build -o vitastor-csi
CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go build -o vitastor-csi
# Final stage # Final stage
FROM debian:bookworm FROM debian:buster
LABEL maintainers="Vitaliy Filippov <vitalif@yourcmc.ru>" LABEL maintainers="Vitaliy Filippov <vitalif@yourcmc.ru>"
LABEL description="Vitastor CSI Driver" LABEL description="Vitastor CSI Driver"
@ -19,30 +18,19 @@ ENV CSI_ENDPOINT=""
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y wget && \ apt-get install -y wget && \
(echo deb http://deb.debian.org/debian buster-backports main > /etc/apt/sources.list.d/backports.list) && \
(echo "APT::Install-Recommends false;" > /etc/apt/apt.conf) && \ (echo "APT::Install-Recommends false;" > /etc/apt/apt.conf) && \
apt-get update && \ apt-get update && \
apt-get install -y e2fsprogs xfsprogs kmod iproute2 \ apt-get install -y e2fsprogs xfsprogs kmod && \
# dependencies of qemu-storage-daemon
libnuma1 liburing2 libglib2.0-0 libfuse3-3 libaio1 libzstd1 libnettle8 \
libgmp10 libhogweed6 libp11-kit0 libidn2-0 libunistring2 libtasn1-6 libpcre2-8-0 libffi8 && \
apt-get clean && \ apt-get clean && \
(echo options nbd nbds_max=128 > /etc/modprobe.d/nbd.conf) (echo options nbd nbds_max=128 > /etc/modprobe.d/nbd.conf)
COPY --from=build /app/vitastor-csi /bin/ COPY --from=build /app/vitastor-csi /bin/
RUN (echo deb http://vitastor.io/debian bookworm main > /etc/apt/sources.list.d/vitastor.list) && \ RUN (echo deb http://vitastor.io/debian buster main > /etc/apt/sources.list.d/vitastor.list) && \
((echo 'Package: *'; echo 'Pin: origin "vitastor.io"'; echo 'Pin-Priority: 1000') > /etc/apt/preferences.d/vitastor.pref) && \
wget -q -O /etc/apt/trusted.gpg.d/vitastor.gpg https://vitastor.io/debian/pubkey.gpg && \ wget -q -O /etc/apt/trusted.gpg.d/vitastor.gpg https://vitastor.io/debian/pubkey.gpg && \
apt-get update && \ apt-get update && \
apt-get install -y vitastor-client && \ apt-get install -y vitastor-client && \
wget https://vitastor.io/archive/qemu/qemu-bookworm-8.1.2%2Bds-1%2Bvitastor1/qemu-utils_8.1.2%2Bds-1%2Bvitastor1_amd64.deb && \
wget https://vitastor.io/archive/qemu/qemu-bookworm-8.1.2%2Bds-1%2Bvitastor1/qemu-block-extra_8.1.2%2Bds-1%2Bvitastor1_amd64.deb && \
dpkg -x qemu-utils*.deb tmp1 && \
dpkg -x qemu-block-extra*.deb tmp1 && \
cp -a tmp1/usr/bin/qemu-storage-daemon /usr/bin/ && \
mkdir -p /usr/lib/x86_64-linux-gnu/qemu && \
cp -a tmp1/usr/lib/x86_64-linux-gnu/qemu/block-vitastor.so /usr/lib/x86_64-linux-gnu/qemu/ && \
rm -rf tmp1 *.deb && \
apt-get clean apt-get clean
ENTRYPOINT ["/bin/vitastor-csi"] ENTRYPOINT ["/bin/vitastor-csi"]

View File

@ -1,9 +1,9 @@
VITASTOR_VERSION ?= v1.9.3 VERSION ?= v0.9.2
all: build push all: build push
build: build:
@docker build --rm -t vitalif/vitastor-csi:$(VITASTOR_VERSION) . @docker build --rm -t vitalif/vitastor-csi:$(VERSION) .
push: push:
@docker push vitalif/vitastor-csi:$(VITASTOR_VERSION) @docker push vitalif/vitastor-csi:$(VERSION)

View File

@ -2,7 +2,6 @@
apiVersion: v1 apiVersion: v1
kind: ConfigMap kind: ConfigMap
data: data:
# You can add multiple configuration files here to use a multi-cluster setup
vitastor.conf: |- vitastor.conf: |-
{"etcd_address":"http://192.168.7.2:2379","etcd_prefix":"/vitastor"} {"etcd_address":"http://192.168.7.2:2379","etcd_prefix":"/vitastor"}
metadata: metadata:

View File

@ -49,7 +49,7 @@ spec:
capabilities: capabilities:
add: ["SYS_ADMIN"] add: ["SYS_ADMIN"]
allowPrivilegeEscalation: true allowPrivilegeEscalation: true
image: vitalif/vitastor-csi:v1.9.3 image: vitalif/vitastor-csi:v0.9.2
args: args:
- "--node=$(NODE_ID)" - "--node=$(NODE_ID)"
- "--endpoint=$(CSI_ENDPOINT)" - "--endpoint=$(CSI_ENDPOINT)"
@ -82,8 +82,6 @@ spec:
name: host-sys name: host-sys
- mountPath: /run/mount - mountPath: /run/mount
name: host-mount name: host-mount
- mountPath: /run/vitastor-csi
name: run-vitastor-csi
- mountPath: /lib/modules - mountPath: /lib/modules
name: lib-modules name: lib-modules
readOnly: true readOnly: true
@ -134,9 +132,6 @@ spec:
- name: host-mount - name: host-mount
hostPath: hostPath:
path: /run/mount path: /run/mount
- name: run-vitastor-csi
hostPath:
path: /run/vitastor-csi
- name: lib-modules - name: lib-modules
hostPath: hostPath:
path: /lib/modules path: /lib/modules

View File

@ -35,13 +35,10 @@ rules:
verbs: ["get", "list", "watch"] verbs: ["get", "list", "watch"]
- apiGroups: ["snapshot.storage.k8s.io"] - apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshots"] resources: ["volumesnapshots"]
verbs: ["get", "list", "patch"] verbs: ["get", "list"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshots/status"]
verbs: ["get", "list", "patch"]
- apiGroups: ["snapshot.storage.k8s.io"] - apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotcontents"] resources: ["volumesnapshotcontents"]
verbs: ["create", "get", "list", "watch", "update", "delete", "patch"] verbs: ["create", "get", "list", "watch", "update", "delete"]
- apiGroups: ["snapshot.storage.k8s.io"] - apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotclasses"] resources: ["volumesnapshotclasses"]
verbs: ["get", "list", "watch"] verbs: ["get", "list", "watch"]
@ -56,7 +53,7 @@ rules:
verbs: ["get", "list", "watch"] verbs: ["get", "list", "watch"]
- apiGroups: ["snapshot.storage.k8s.io"] - apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotcontents/status"] resources: ["volumesnapshotcontents/status"]
verbs: ["update", "patch"] verbs: ["update"]
- apiGroups: [""] - apiGroups: [""]
resources: ["configmaps"] resources: ["configmaps"]
verbs: ["get"] verbs: ["get"]

View File

@ -23,11 +23,6 @@ metadata:
name: csi-vitastor-provisioner name: csi-vitastor-provisioner
spec: spec:
replicas: 3 replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 0
selector: selector:
matchLabels: matchLabels:
app: csi-vitastor-provisioner app: csi-vitastor-provisioner
@ -51,7 +46,7 @@ spec:
priorityClassName: system-cluster-critical priorityClassName: system-cluster-critical
containers: containers:
- name: csi-provisioner - name: csi-provisioner
image: k8s.gcr.io/sig-storage/csi-provisioner:v3.0.0 image: k8s.gcr.io/sig-storage/csi-provisioner:v2.2.0
args: args:
- "--csi-address=$(ADDRESS)" - "--csi-address=$(ADDRESS)"
- "--v=5" - "--v=5"
@ -121,7 +116,7 @@ spec:
privileged: true privileged: true
capabilities: capabilities:
add: ["SYS_ADMIN"] add: ["SYS_ADMIN"]
image: vitalif/vitastor-csi:v1.9.3 image: vitalif/vitastor-csi:v0.9.2
args: args:
- "--node=$(NODE_ID)" - "--node=$(NODE_ID)"
- "--endpoint=$(CSI_ENDPOINT)" - "--endpoint=$(CSI_ENDPOINT)"

View File

@ -12,6 +12,8 @@ parameters:
etcdVolumePrefix: "" etcdVolumePrefix: ""
poolId: "1" poolId: "1"
# you can choose other configuration file if you have it in the config map # you can choose other configuration file if you have it in the config map
# different etcd URLs and prefixes should also be put in the config
#configPath: "/etc/vitastor/vitastor.conf" #configPath: "/etc/vitastor/vitastor.conf"
allowVolumeExpansion: true # you can also specify etcdUrl here, maybe to connect to another Vitastor cluster
# multiple etcdUrls may be specified, delimited by comma
#etcdUrl: "http://192.168.7.2:2379"
#etcdPrefix: "/vitastor"

View File

@ -1,7 +0,0 @@
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
name: vitastor-snapclass
driver: csi.vitastor.io
deletionPolicy: Delete
parameters:

View File

@ -1,16 +0,0 @@
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: test-vitastor-clone
spec:
storageClassName: vitastor
dataSource:
name: snap1
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

View File

@ -1,8 +0,0 @@
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
name: snap1
spec:
volumeSnapshotClassName: vitastor-snapclass
source:
persistentVolumeClaimName: test-vitastor-pvc

View File

@ -3,13 +3,12 @@ module vitastor.io/csi
go 1.15 go 1.15
require ( require (
github.com/container-storage-interface/spec v1.8.0 github.com/container-storage-interface/spec v1.4.0
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b
github.com/kubernetes-csi/csi-lib-utils v0.9.1 github.com/kubernetes-csi/csi-lib-utils v0.9.1
golang.org/x/net v0.7.0 golang.org/x/net v0.0.0-20201202161906-c7110b5ffcbb
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
google.golang.org/grpc v1.33.1 google.golang.org/grpc v1.33.1
google.golang.org/protobuf v1.24.0
k8s.io/klog v1.0.0 k8s.io/klog v1.0.0
k8s.io/utils v0.0.0-20210305010621-2afb4311ab10 k8s.io/utils v0.0.0-20210305010621-2afb4311ab10
) )

View File

@ -41,8 +41,8 @@ github.com/chzyer/logex v1.1.10/go.mod h1:+Ywpsq7O8HXn0nuIou7OrIPyXbp3wmkHB+jjWR
github.com/chzyer/readline v0.0.0-20180603132655-2972be24d48e/go.mod h1:nSuG5e5PlCu98SY8svDHJxuZscDgtXS6KTTbou5AhLI= github.com/chzyer/readline v0.0.0-20180603132655-2972be24d48e/go.mod h1:nSuG5e5PlCu98SY8svDHJxuZscDgtXS6KTTbou5AhLI=
github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMnBNeIyt5eFwwo7qiLfzFZmjNmxjkiQlU= github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMnBNeIyt5eFwwo7qiLfzFZmjNmxjkiQlU=
github.com/container-storage-interface/spec v1.2.0/go.mod h1:6URME8mwIBbpVyZV93Ce5St17xBiQJQY67NDsuohiy4= github.com/container-storage-interface/spec v1.2.0/go.mod h1:6URME8mwIBbpVyZV93Ce5St17xBiQJQY67NDsuohiy4=
github.com/container-storage-interface/spec v1.8.0 h1:D0vhF3PLIZwlwZEf2eNbpujGCNwspwTYf2idJRJx4xI= github.com/container-storage-interface/spec v1.4.0 h1:ozAshSKxpJnYUfmkpZCTYyF/4MYeYlhdXbAvPvfGmkg=
github.com/container-storage-interface/spec v1.8.0/go.mod h1:ROLik+GhPslwwWRNFF1KasPzroNARibH2rfz1rkg4H0= github.com/container-storage-interface/spec v1.4.0/go.mod h1:6URME8mwIBbpVyZV93Ce5St17xBiQJQY67NDsuohiy4=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c= github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
@ -182,7 +182,6 @@ github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UV
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4= github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
github.com/stretchr/testify v1.5.1 h1:nOGnQDM7FYENwehXlg/kFVnos3rEvtKTjRvOWSzb6H4= github.com/stretchr/testify v1.5.1 h1:nOGnQDM7FYENwehXlg/kFVnos3rEvtKTjRvOWSzb6H4=
github.com/stretchr/testify v1.5.1/go.mod h1:5W2xD1RspED5o8YsWQXVCued0rvSQ+mT+I5cxcmMvtA= github.com/stretchr/testify v1.5.1/go.mod h1:5W2xD1RspED5o8YsWQXVCued0rvSQ+mT+I5cxcmMvtA=
github.com/yuin/goldmark v1.4.13/go.mod h1:6yULJ656Px+3vBD8DxQVa3kxgyrAnzto9xy5taEt/CY=
go.opencensus.io v0.21.0/go.mod h1:mSImk1erAIZhrmZN+AvHh14ztQfjbGwt4TtuofqLduU= go.opencensus.io v0.21.0/go.mod h1:mSImk1erAIZhrmZN+AvHh14ztQfjbGwt4TtuofqLduU=
go.opencensus.io v0.22.0/go.mod h1:+kGneAE2xo2IficOXnaByMWTGM9T73dGwxeWcUqIpI8= go.opencensus.io v0.22.0/go.mod h1:+kGneAE2xo2IficOXnaByMWTGM9T73dGwxeWcUqIpI8=
go.opencensus.io v0.22.2/go.mod h1:yxeiOL68Rb0Xd1ddK5vPZ/oVn4vY4Ynel7k9FzqtOIw= go.opencensus.io v0.22.2/go.mod h1:yxeiOL68Rb0Xd1ddK5vPZ/oVn4vY4Ynel7k9FzqtOIw=
@ -196,7 +195,6 @@ golang.org/x/crypto v0.0.0-20190605123033-f99c8df09eb5/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191206172530-e9b2fee46413/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20191206172530-e9b2fee46413/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
@ -215,7 +213,6 @@ golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCc
golang.org/x/mod v0.0.0-20190513183733-4bf6d317e70e/go.mod h1:mXi4GBBbnImb6dmsKGUJ2LatrhH/nqhxcFungHvyanc= golang.org/x/mod v0.0.0-20190513183733-4bf6d317e70e/go.mod h1:mXi4GBBbnImb6dmsKGUJ2LatrhH/nqhxcFungHvyanc=
golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY= golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY=
golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzBzNggFXnrqF1CaUcvgkdR5Ot7KZg= golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzBzNggFXnrqF1CaUcvgkdR5Ot7KZg=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@ -231,10 +228,8 @@ golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLL
golang.org/x/net v0.0.0-20191209160850-c0dbc17a3553/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= golang.org/x/net v0.0.0-20191209160850-c0dbc17a3553/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20200324143707-d3edc9973b7e/go.mod h1:qpuaurCH72eLCgpAm/N6yyVIVM9cpaDIP3A8BGJEC5A= golang.org/x/net v0.0.0-20200324143707-d3edc9973b7e/go.mod h1:qpuaurCH72eLCgpAm/N6yyVIVM9cpaDIP3A8BGJEC5A=
golang.org/x/net v0.0.0-20200707034311-ab3426394381/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA= golang.org/x/net v0.0.0-20200707034311-ab3426394381/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA=
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg= golang.org/x/net v0.0.0-20201202161906-c7110b5ffcbb h1:eBmm0M9fYhWpKZLjQUUKka/LtIxf46G4fxeEz5KJr9U=
golang.org/x/net v0.0.0-20220722155237-a158d28d115b/go.mod h1:XRhObCWvk6IyKnWLug+ECip1KBveYUHfp+8e9klMJ9c= golang.org/x/net v0.0.0-20201202161906-c7110b5ffcbb/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.7.0 h1:rJrUqqhjsgNp7KqAIc25s9pZnjU7TUcSY7HcVZjdn1g=
golang.org/x/net v0.7.0/go.mod h1:2Tu9+aMcznHK/AK1HMvgo6xiTLG5rD5rZLDS+rp2Bjs=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U= golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20190226205417-e64efc72b421/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= golang.org/x/oauth2 v0.0.0-20190226205417-e64efc72b421/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
@ -245,7 +240,6 @@ golang.org/x/sync v0.0.0-20181221193216-37e7f081c4d4/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190227155943-e225da77a7e6/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20190227155943-e225da77a7e6/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181116152217-5ac8a444bdc5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20181116152217-5ac8a444bdc5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
@ -265,22 +259,13 @@ golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527/go.mod h1:h1NjWce9XRLGQEsW7w
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200615200032-f1bc736245b1/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200615200032-f1bc736245b1/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200622214017-ed371f2e16b4/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200622214017-ed371f2e16b4/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f h1:+Nyd8tzPX9R7BWHguqsrbFdRx3WQ/1ib8I44HXV5yTA=
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220722155257-8c9f86f7a55f/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0 h1:MUK/U/4lj1t1oPg0HfuXDN/Z1wv31ZJ/YcPiGccS4DU=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/term v0.5.0/go.mod h1:jMB1sMXY+tzblOD4FWmEbocvup2/aLOaQEp7JmGp78k=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk= golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
golang.org/x/text v0.3.3 h1:cokOdA+Jmi5PJGXLlLllQSgYigAEfHXJAERHVMaCc2k=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
golang.org/x/text v0.7.0 h1:4BRB4x83lYWy72KwLD/qYDuTu7q9PjSagHvijDw7cLo=
golang.org/x/text v0.7.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
golang.org/x/time v0.0.0-20181108054448-85acf8d2951c/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= golang.org/x/time v0.0.0-20181108054448-85acf8d2951c/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/time v0.0.0-20190308202827-9d24e82272b4/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= golang.org/x/time v0.0.0-20190308202827-9d24e82272b4/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/time v0.0.0-20191024005414-555d28b269f0/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ= golang.org/x/time v0.0.0-20191024005414-555d28b269f0/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
@ -301,10 +286,8 @@ golang.org/x/tools v0.0.0-20190628153133-6cdbf07be9d0/go.mod h1:/rFqwRUd4F7ZHNgw
golang.org/x/tools v0.0.0-20190816200558-6889da9d5479/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= golang.org/x/tools v0.0.0-20190816200558-6889da9d5479/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20190911174233-4f2ddba30aff/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= golang.org/x/tools v0.0.0-20190911174233-4f2ddba30aff/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191125144606-a911d9008d1f/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= golang.org/x/tools v0.0.0-20191125144606-a911d9008d1f/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191227053925-7b8e75db28f4/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28= golang.org/x/tools v0.0.0-20191227053925-7b8e75db28f4/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28=
golang.org/x/tools v0.1.12/go.mod h1:hNGJHUnrk76NpqgfD5Aqm5Crs+Hm0VOH/i9J2+nxYbc=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@ -5,7 +5,7 @@ package vitastor
const ( const (
vitastorCSIDriverName = "csi.vitastor.io" vitastorCSIDriverName = "csi.vitastor.io"
vitastorCSIDriverVersion = "1.9.3" vitastorCSIDriverVersion = "0.9.2"
) )
// Config struct fills the parameters of request or user input // Config struct fills the parameters of request or user input

View File

@ -8,9 +8,11 @@ import (
"encoding/json" "encoding/json"
"fmt" "fmt"
"strings" "strings"
"bytes"
"strconv" "strconv"
"time" "time"
"os" "os"
"os/exec"
"io/ioutil" "io/ioutil"
"github.com/kubernetes-csi/csi-lib-utils/protosanitizer" "github.com/kubernetes-csi/csi-lib-utils/protosanitizer"
@ -18,7 +20,6 @@ import (
"google.golang.org/grpc/codes" "google.golang.org/grpc/codes"
"google.golang.org/grpc/status" "google.golang.org/grpc/status"
"google.golang.org/protobuf/types/known/timestamppb"
"github.com/container-storage-interface/spec/lib/go/csi" "github.com/container-storage-interface/spec/lib/go/csi"
) )
@ -44,7 +45,6 @@ type InodeConfig struct
ParentPool uint64 `json:"parent_pool,omitempty"` ParentPool uint64 `json:"parent_pool,omitempty"`
ParentId uint64 `json:"parent_id,omitempty"` ParentId uint64 `json:"parent_id,omitempty"`
Readonly bool `json:"readonly,omitempty"` Readonly bool `json:"readonly,omitempty"`
CreateTs uint64 `json:"create_ts,omitempty"`
} }
type ControllerServer struct type ControllerServer struct
@ -60,7 +60,7 @@ func NewControllerServer(driver *Driver) *ControllerServer
} }
} }
func GetConnectionParams(params map[string]string) (map[string]string, error) func GetConnectionParams(params map[string]string) (map[string]string, []string, string)
{ {
ctxVars := make(map[string]string) ctxVars := make(map[string]string)
configPath := params["configPath"] configPath := params["configPath"]
@ -73,53 +73,71 @@ func GetConnectionParams(params map[string]string) (map[string]string, error)
ctxVars["configPath"] = configPath ctxVars["configPath"] = configPath
} }
config := make(map[string]interface{}) config := make(map[string]interface{})
configFD, err := os.Open(configPath) if configFD, err := os.Open(configPath); err == nil
if (err != nil)
{ {
return nil, err
}
defer configFD.Close() defer configFD.Close()
data, _ := ioutil.ReadAll(configFD) data, _ := ioutil.ReadAll(configFD)
json.Unmarshal(data, &config) json.Unmarshal(data, &config)
// Check etcd URL in the config, but do not use the explicit etcdUrl }
// parameter for CLI calls, otherwise users won't be able to later // Try to load prefix & etcd URL from the config
// change them - storage class parameters are saved in volume IDs
var etcdUrl []string var etcdUrl []string
switch config["etcd_address"].(type) if (params["etcdUrl"] != "")
{ {
case string: ctxVars["etcdUrl"] = params["etcdUrl"]
url := strings.TrimSpace(config["etcd_address"].(string)) etcdUrl = strings.Split(params["etcdUrl"], ",")
if (url != "")
{
etcdUrl = strings.Split(url, ",")
}
case []string:
etcdUrl = config["etcd_address"].([]string)
case []interface{}:
for _, url := range config["etcd_address"].([]interface{})
{
s, ok := url.(string)
if (ok)
{
etcdUrl = append(etcdUrl, s)
}
}
} }
if (len(etcdUrl) == 0) if (len(etcdUrl) == 0)
{ {
return nil, status.Error(codes.InvalidArgument, "etcd_address is missing in "+configPath) switch config["etcd_address"].(type)
{
case string:
etcdUrl = strings.Split(config["etcd_address"].(string), ",")
case []string:
etcdUrl = config["etcd_address"].([]string)
} }
return ctxVars, nil }
etcdPrefix := params["etcdPrefix"]
if (etcdPrefix == "")
{
etcdPrefix, _ = config["etcd_prefix"].(string)
if (etcdPrefix == "")
{
etcdPrefix = "/vitastor"
}
}
else
{
ctxVars["etcdPrefix"] = etcdPrefix
}
return ctxVars, etcdUrl, etcdPrefix
} }
func invokeCLI(ctxVars map[string]string, args []string) ([]byte, error) func invokeCLI(ctxVars map[string]string, args []string) ([]byte, error)
{ {
if (ctxVars["etcdUrl"] != "")
{
args = append(args, "--etcd_address", ctxVars["etcdUrl"])
}
if (ctxVars["etcdPrefix"] != "")
{
args = append(args, "--etcd_prefix", ctxVars["etcdPrefix"])
}
if (ctxVars["configPath"] != "") if (ctxVars["configPath"] != "")
{ {
args = append(args, "--config_path", ctxVars["configPath"]) args = append(args, "--config_path", ctxVars["configPath"])
} }
stdout, _, err := system("/usr/bin/vitastor-cli", args...) c := exec.Command("/usr/bin/vitastor-cli", args...)
return stdout, err var stdout, stderr bytes.Buffer
c.Stdout = &stdout
c.Stderr = &stderr
err := c.Run()
stderrStr := string(stderr.Bytes())
if (err != nil)
{
klog.Errorf("vitastor-cli %s failed: %s, status %s\n", strings.Join(args, " "), stderrStr, err)
return nil, status.Error(codes.Internal, stderrStr+" (status "+err.Error()+")")
}
return stdout.Bytes(), nil
} }
// Create the volume // Create the volume
@ -140,12 +158,6 @@ func (cs *ControllerServer) CreateVolume(ctx context.Context, req *csi.CreateVol
return nil, status.Error(codes.InvalidArgument, "volume capabilities is a required field") return nil, status.Error(codes.InvalidArgument, "volume capabilities is a required field")
} }
err := cs.checkCaps(volumeCapabilities)
if (err != nil)
{
return nil, err
}
etcdVolumePrefix := req.Parameters["etcdVolumePrefix"] etcdVolumePrefix := req.Parameters["etcdVolumePrefix"]
poolId, _ := strconv.ParseUint(req.Parameters["poolId"], 10, 64) poolId, _ := strconv.ParseUint(req.Parameters["poolId"], 10, 64)
if (poolId == 0) if (poolId == 0)
@ -160,49 +172,33 @@ func (cs *ControllerServer) CreateVolume(ctx context.Context, req *csi.CreateVol
volSize = ((capRange.GetRequiredBytes() + MB - 1) / MB) * MB volSize = ((capRange.GetRequiredBytes() + MB - 1) / MB) * MB
} }
ctxVars, err := GetConnectionParams(req.Parameters) ctxVars, etcdUrl, _ := GetConnectionParams(req.Parameters)
if (err != nil) if (len(etcdUrl) == 0)
{ {
return nil, err return nil, status.Error(codes.InvalidArgument, "no etcdUrl in storage class configuration and no etcd_address in vitastor.conf")
}
args := []string{ "create", volName, "-s", fmt.Sprintf("%v", volSize), "--pool", fmt.Sprintf("%v", poolId) }
// Support creation from snapshot
var src *csi.VolumeContentSource
if (req.VolumeContentSource.GetSnapshot() != nil)
{
snapId := req.VolumeContentSource.GetSnapshot().GetSnapshotId()
if (snapId != "")
{
snapVars := make(map[string]string)
err := json.Unmarshal([]byte(snapId), &snapVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
args = append(args, "--parent", snapVars["name"]+"@"+snapVars["snapshot"])
src = &csi.VolumeContentSource{
Type: &csi.VolumeContentSource_Snapshot{
Snapshot: &csi.VolumeContentSource_SnapshotSource{
SnapshotId: snapId,
},
},
}
}
} }
// Create image using vitastor-cli // Create image using vitastor-cli
_, err = invokeCLI(ctxVars, args) _, err := invokeCLI(ctxVars, []string{ "create", volName, "-s", fmt.Sprintf("%v", volSize), "--pool", fmt.Sprintf("%v", poolId) })
if (err != nil) if (err != nil)
{ {
if (strings.Index(err.Error(), "already exists") > 0) if (strings.Index(err.Error(), "already exists") > 0)
{ {
inodeCfg, err := invokeList(ctxVars, volName, true) stat, err := invokeCLI(ctxVars, []string{ "ls", "--json", volName })
if (err != nil) if (err != nil)
{ {
return nil, err return nil, err
} }
var inodeCfg []InodeConfig
err = json.Unmarshal(stat, &inodeCfg)
if (err != nil)
{
return nil, status.Error(codes.Internal, "Invalid JSON in vitastor-cli ls: "+err.Error())
}
if (len(inodeCfg) == 0)
{
return nil, status.Error(codes.Internal, "vitastor-cli create said that image already exists, but ls can't find it")
}
if (inodeCfg[0].Size < uint64(volSize)) if (inodeCfg[0].Size < uint64(volSize))
{ {
return nil, status.Error(codes.Internal, "image "+volName+" is already created, but size is less than expected") return nil, status.Error(codes.Internal, "image "+volName+" is already created, but size is less than expected")
@ -221,7 +217,6 @@ func (cs *ControllerServer) CreateVolume(ctx context.Context, req *csi.CreateVol
// Ugly, but VolumeContext isn't passed to DeleteVolume :-( // Ugly, but VolumeContext isn't passed to DeleteVolume :-(
VolumeId: string(volumeIdJson), VolumeId: string(volumeIdJson),
CapacityBytes: volSize, CapacityBytes: volSize,
ContentSource: src,
}, },
}, nil }, nil
} }
@ -235,19 +230,15 @@ func (cs *ControllerServer) DeleteVolume(ctx context.Context, req *csi.DeleteVol
return nil, status.Error(codes.InvalidArgument, "request cannot be empty") return nil, status.Error(codes.InvalidArgument, "request cannot be empty")
} }
volVars := make(map[string]string) ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &volVars) err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil) if (err != nil)
{ {
return nil, status.Error(codes.Internal, "volume ID not in JSON format") return nil, status.Error(codes.Internal, "volume ID not in JSON format")
} }
volName := volVars["name"] volName := ctxVars["name"]
ctxVars, err := GetConnectionParams(volVars) ctxVars, _, _ = GetConnectionParams(ctxVars)
if (err != nil)
{
return nil, err
}
_, err = invokeCLI(ctxVars, []string{ "rm", volName }) _, err = invokeCLI(ctxVars, []string{ "rm", volName })
if (err != nil) if (err != nil)
@ -289,44 +280,13 @@ func (cs *ControllerServer) ValidateVolumeCapabilities(ctx context.Context, req
return nil, status.Error(codes.InvalidArgument, "volumeCapabilities is nil") return nil, status.Error(codes.InvalidArgument, "volumeCapabilities is nil")
} }
err := cs.checkCaps(volumeCapabilities)
if (err != nil)
{
return nil, err
}
return &csi.ValidateVolumeCapabilitiesResponse{
Confirmed: &csi.ValidateVolumeCapabilitiesResponse_Confirmed{
VolumeCapabilities: req.VolumeCapabilities,
},
}, nil
}
func (cs *ControllerServer) checkCaps(volumeCapabilities []*csi.VolumeCapability) error
{
var volumeCapabilityAccessModes []*csi.VolumeCapability_AccessMode var volumeCapabilityAccessModes []*csi.VolumeCapability_AccessMode
for _, mode := range []csi.VolumeCapability_AccessMode_Mode{ for _, mode := range []csi.VolumeCapability_AccessMode_Mode{
csi.VolumeCapability_AccessMode_SINGLE_NODE_WRITER, csi.VolumeCapability_AccessMode_SINGLE_NODE_WRITER,
csi.VolumeCapability_AccessMode_SINGLE_NODE_READER_ONLY,
csi.VolumeCapability_AccessMode_MULTI_NODE_READER_ONLY,
csi.VolumeCapability_AccessMode_SINGLE_NODE_SINGLE_WRITER,
csi.VolumeCapability_AccessMode_SINGLE_NODE_MULTI_WRITER,
} {
volumeCapabilityAccessModes = append(volumeCapabilityAccessModes, &csi.VolumeCapability_AccessMode{Mode: mode})
}
for _, capability := range volumeCapabilities
{
if (capability.GetBlock() != nil)
{
for _, mode := range []csi.VolumeCapability_AccessMode_Mode{
csi.VolumeCapability_AccessMode_MULTI_NODE_SINGLE_WRITER,
csi.VolumeCapability_AccessMode_MULTI_NODE_MULTI_WRITER, csi.VolumeCapability_AccessMode_MULTI_NODE_MULTI_WRITER,
} { } {
volumeCapabilityAccessModes = append(volumeCapabilityAccessModes, &csi.VolumeCapability_AccessMode{Mode: mode}) volumeCapabilityAccessModes = append(volumeCapabilityAccessModes, &csi.VolumeCapability_AccessMode{Mode: mode})
} }
break
}
}
capabilitySupport := false capabilitySupport := false
for _, capability := range volumeCapabilities for _, capability := range volumeCapabilities
@ -342,10 +302,14 @@ func (cs *ControllerServer) checkCaps(volumeCapabilities []*csi.VolumeCapability
if (!capabilitySupport) if (!capabilitySupport)
{ {
return status.Errorf(codes.NotFound, "%v not supported", volumeCapabilities) return nil, status.Errorf(codes.NotFound, "%v not supported", req.GetVolumeCapabilities())
} }
return nil return &csi.ValidateVolumeCapabilitiesResponse{
Confirmed: &csi.ValidateVolumeCapabilitiesResponse_Confirmed{
VolumeCapabilities: req.VolumeCapabilities,
},
}, nil
} }
// ListVolumes returns a list of volumes // ListVolumes returns a list of volumes
@ -380,8 +344,6 @@ func (cs *ControllerServer) ControllerGetCapabilities(ctx context.Context, req *
csi.ControllerServiceCapability_RPC_LIST_VOLUMES, csi.ControllerServiceCapability_RPC_LIST_VOLUMES,
csi.ControllerServiceCapability_RPC_EXPAND_VOLUME, csi.ControllerServiceCapability_RPC_EXPAND_VOLUME,
csi.ControllerServiceCapability_RPC_CREATE_DELETE_SNAPSHOT, csi.ControllerServiceCapability_RPC_CREATE_DELETE_SNAPSHOT,
csi.ControllerServiceCapability_RPC_LIST_SNAPSHOTS,
// TODO: csi.ControllerServiceCapability_RPC_CLONE_VOLUME,
} { } {
controllerServerCapabilities = append(controllerServerCapabilities, functionControllerServerCapabilities(capability)) controllerServerCapabilities = append(controllerServerCapabilities, functionControllerServerCapabilities(capability))
} }
@ -391,226 +353,28 @@ func (cs *ControllerServer) ControllerGetCapabilities(ctx context.Context, req *
}, nil }, nil
} }
func invokeList(ctxVars map[string]string, pattern string, expectExist bool) ([]InodeConfig, error)
{
stat, err := invokeCLI(ctxVars, []string{ "ls", "--json", pattern })
if (err != nil)
{
return nil, err
}
var inodeCfg []InodeConfig
err = json.Unmarshal(stat, &inodeCfg)
if (err != nil)
{
return nil, status.Error(codes.Internal, "Invalid JSON in vitastor-cli ls: "+err.Error())
}
if (expectExist && len(inodeCfg) == 0)
{
return nil, status.Error(codes.Internal, "Can't find expected image "+pattern+" via vitastor-cli ls")
}
return inodeCfg, nil
}
// CreateSnapshot create snapshot of an existing PV // CreateSnapshot create snapshot of an existing PV
func (cs *ControllerServer) CreateSnapshot(ctx context.Context, req *csi.CreateSnapshotRequest) (*csi.CreateSnapshotResponse, error) func (cs *ControllerServer) CreateSnapshot(ctx context.Context, req *csi.CreateSnapshotRequest) (*csi.CreateSnapshotResponse, error)
{ {
klog.Infof("received controller create snapshot request %+v", protosanitizer.StripSecrets(req)) return nil, status.Error(codes.Unimplemented, "")
if (req == nil)
{
return nil, status.Errorf(codes.InvalidArgument, "request cannot be empty")
}
if (req.SourceVolumeId == "" || req.Name == "")
{
return nil, status.Error(codes.InvalidArgument, "source volume ID and snapshot name are required fields")
}
// snapshot name
snapName := req.Name
// req.VolumeId is an ugly json string in our case :)
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.SourceVolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
// Create image using vitastor-cli
_, err = invokeCLI(ctxVars, []string{ "create", "--snapshot", snapName, volName })
if (err != nil && strings.Index(err.Error(), "already exists") <= 0)
{
return nil, err
}
// Check created snapshot
inodeCfg, err := invokeList(ctxVars, volName+"@"+snapName, true)
if (err != nil)
{
return nil, err
}
// Use ugly JSON snapshot ID again, DeleteSnapshot doesn't have context :-(
ctxVars["snapshot"] = snapName
snapIdJson, _ := json.Marshal(ctxVars)
return &csi.CreateSnapshotResponse{
Snapshot: &csi.Snapshot{
SizeBytes: int64(inodeCfg[0].Size),
SnapshotId: string(snapIdJson),
SourceVolumeId: req.SourceVolumeId,
CreationTime: &timestamppb.Timestamp{ Seconds: int64(inodeCfg[0].CreateTs) },
ReadyToUse: true,
},
}, nil
} }
// DeleteSnapshot delete provided snapshot of a PV // DeleteSnapshot delete provided snapshot of a PV
func (cs *ControllerServer) DeleteSnapshot(ctx context.Context, req *csi.DeleteSnapshotRequest) (*csi.DeleteSnapshotResponse, error) func (cs *ControllerServer) DeleteSnapshot(ctx context.Context, req *csi.DeleteSnapshotRequest) (*csi.DeleteSnapshotResponse, error)
{ {
klog.Infof("received controller delete snapshot request %+v", protosanitizer.StripSecrets(req)) return nil, status.Error(codes.Unimplemented, "")
if (req == nil)
{
return nil, status.Errorf(codes.InvalidArgument, "request cannot be empty")
}
if (req.SnapshotId == "")
{
return nil, status.Error(codes.InvalidArgument, "snapshot ID is a required field")
}
volVars := make(map[string]string)
err := json.Unmarshal([]byte(req.SnapshotId), &volVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "snapshot ID not in JSON format")
}
volName := volVars["name"]
snapName := volVars["snapshot"]
ctxVars, err := GetConnectionParams(volVars)
if (err != nil)
{
return nil, err
}
_, err = invokeCLI(ctxVars, []string{ "rm", volName+"@"+snapName })
if (err != nil)
{
return nil, err
}
return &csi.DeleteSnapshotResponse{}, nil
} }
// ListSnapshots list the snapshots of a PV // ListSnapshots list the snapshots of a PV
func (cs *ControllerServer) ListSnapshots(ctx context.Context, req *csi.ListSnapshotsRequest) (*csi.ListSnapshotsResponse, error) func (cs *ControllerServer) ListSnapshots(ctx context.Context, req *csi.ListSnapshotsRequest) (*csi.ListSnapshotsResponse, error)
{ {
klog.Infof("received controller list snapshots request %+v", protosanitizer.StripSecrets(req)) return nil, status.Error(codes.Unimplemented, "")
if (req == nil)
{
return nil, status.Error(codes.InvalidArgument, "request cannot be empty")
}
volVars := make(map[string]string)
err := json.Unmarshal([]byte(req.SourceVolumeId), &volVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := volVars["name"]
ctxVars, err := GetConnectionParams(volVars)
if (err != nil)
{
return nil, err
}
inodeCfg, err := invokeList(ctxVars, volName+"@*", false)
if (err != nil)
{
return nil, err
}
resp := &csi.ListSnapshotsResponse{}
for _, ino := range inodeCfg
{
snapName := ino.Name[len(volName)+1:]
if (len(req.StartingToken) > 0 && snapName < req.StartingToken)
{
}
else if (req.MaxEntries == 0 || len(resp.Entries) < int(req.MaxEntries))
{
volVars["snapshot"] = snapName
snapIdJson, _ := json.Marshal(volVars)
resp.Entries = append(resp.Entries, &csi.ListSnapshotsResponse_Entry{
Snapshot: &csi.Snapshot{
SizeBytes: int64(ino.Size),
SnapshotId: string(snapIdJson),
SourceVolumeId: req.SourceVolumeId,
CreationTime: &timestamppb.Timestamp{ Seconds: int64(ino.CreateTs) },
ReadyToUse: true,
},
})
}
else
{
resp.NextToken = snapName
break
}
}
return resp, nil
} }
// ControllerExpandVolume increases the size of a volume // ControllerExpandVolume resizes a volume
func (cs *ControllerServer) ControllerExpandVolume(ctx context.Context, req *csi.ControllerExpandVolumeRequest) (*csi.ControllerExpandVolumeResponse, error) func (cs *ControllerServer) ControllerExpandVolume(ctx context.Context, req *csi.ControllerExpandVolumeRequest) (*csi.ControllerExpandVolumeResponse, error)
{ {
klog.Infof("received controller expand volume request %+v", protosanitizer.StripSecrets(req)) return nil, status.Error(codes.Unimplemented, "")
if (req == nil)
{
return nil, status.Error(codes.InvalidArgument, "request cannot be empty")
}
if (req.VolumeId == "" || req.CapacityRange == nil || req.CapacityRange.RequiredBytes == 0)
{
return nil, status.Error(codes.InvalidArgument, "VolumeId, CapacityRange and RequiredBytes are required fields")
}
volVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &volVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := volVars["name"]
ctxVars, err := GetConnectionParams(volVars)
if (err != nil)
{
return nil, err
}
inodeCfg, err := invokeList(ctxVars, volName, true)
if (err != nil)
{
return nil, err
}
if (req.CapacityRange.RequiredBytes > 0 && inodeCfg[0].Size < uint64(req.CapacityRange.RequiredBytes))
{
sz := ((req.CapacityRange.RequiredBytes+4095)/4096)*4096
_, err := invokeCLI(ctxVars, []string{ "modify", "--inc_size", "1", "--resize", fmt.Sprintf("%d", sz), volName })
if (err != nil)
{
return nil, err
}
inodeCfg, err = invokeList(ctxVars, volName, true)
if (err != nil)
{
return nil, err
}
}
return &csi.ControllerExpandVolumeResponse{
CapacityBytes: int64(inodeCfg[0].Size),
NodeExpansionRequired: false,
}, nil
} }
// ControllerGetVolume get volume info // ControllerGetVolume get volume info

View File

@ -49,13 +49,6 @@ func (is *IdentityServer) GetPluginCapabilities(ctx context.Context, req *csi.Ge
}, },
}, },
}, },
{
Type: &csi.PluginCapability_VolumeExpansion_{
VolumeExpansion: &csi.PluginCapability_VolumeExpansion{
Type: csi.PluginCapability_VolumeExpansion_OFFLINE,
},
},
},
}, },
}, nil }, nil
} }

View File

@ -5,15 +5,11 @@ package vitastor
import ( import (
"context" "context"
"encoding/json"
"fmt"
"os" "os"
"os/exec" "os/exec"
"path/filepath" "encoding/json"
"strings" "strings"
"sync" "bytes"
"syscall"
"time"
"google.golang.org/grpc/codes" "google.golang.org/grpc/codes"
"google.golang.org/grpc/status" "google.golang.org/grpc/status"
@ -29,233 +25,55 @@ import (
type NodeServer struct type NodeServer struct
{ {
*Driver *Driver
useVduse bool
stateDir string
mounter mount.Interface mounter mount.Interface
restartInterval time.Duration
mu sync.Mutex
cond *sync.Cond
volumeLocks map[string]bool
}
type DeviceState struct
{
ConfigPath string `json:"configPath"`
VdpaId string `json:"vdpaId"`
Image string `json:"image"`
Blockdev string `json:"blockdev"`
Readonly bool `json:"readonly"`
PidFile string `json:"pidFile"`
} }
// NewNodeServer create new instance node // NewNodeServer create new instance node
func NewNodeServer(driver *Driver) *NodeServer func NewNodeServer(driver *Driver) *NodeServer
{ {
stateDir := os.Getenv("STATE_DIR") return &NodeServer{
if (stateDir == "")
{
stateDir = "/run/vitastor-csi"
}
if (stateDir[len(stateDir)-1] != '/')
{
stateDir += "/"
}
ns := &NodeServer{
Driver: driver, Driver: driver,
useVduse: checkVduseSupport(),
stateDir: stateDir,
mounter: mount.New(""), mounter: mount.New(""),
volumeLocks: make(map[string]bool),
}
ns.cond = sync.NewCond(&ns.mu)
if (ns.useVduse)
{
ns.restoreVduseDaemons()
dur, err := time.ParseDuration(os.Getenv("RESTART_INTERVAL"))
if (err != nil)
{
dur = 10 * time.Second
}
ns.restartInterval = dur
if (ns.restartInterval != time.Duration(0))
{
go ns.restarter()
}
}
return ns
}
func (ns *NodeServer) lockVolume(lockId string)
{
ns.mu.Lock()
defer ns.mu.Unlock()
for (ns.volumeLocks[lockId])
{
ns.cond.Wait()
}
ns.volumeLocks[lockId] = true
ns.cond.Broadcast()
}
func (ns *NodeServer) unlockVolume(lockId string)
{
ns.mu.Lock()
defer ns.mu.Unlock()
delete(ns.volumeLocks, lockId)
ns.cond.Broadcast()
}
func (ns *NodeServer) restarter()
{
// Restart dead VDUSE daemons at regular intervals
// Otherwise volume I/O may hang in case of a qemu-storage-daemon crash
// Moreover, it may lead to a kernel panic of the kernel is configured to
// panic on hung tasks
ticker := time.NewTicker(ns.restartInterval)
defer ticker.Stop()
for
{
<-ticker.C
ns.restoreVduseDaemons()
}
}
func (ns *NodeServer) restoreVduseDaemons()
{
pattern := ns.stateDir+"vitastor-vduse-*.json"
matches, err := filepath.Glob(pattern)
if (err != nil)
{
klog.Errorf("failed to list %s: %v", pattern, err)
}
if (len(matches) == 0)
{
return
}
devList := make(map[string]interface{})
// example output: {"dev":{"test1":{"type":"block","mgmtdev":"vduse","vendor_id":0,"max_vqs":16,"max_vq_size":128}}}
devListJSON, _, err := system("/sbin/vdpa", "-j", "dev", "list")
if (err != nil)
{
return
}
err = json.Unmarshal(devListJSON, &devList)
devs, ok := devList["dev"].(map[string]interface{})
if (err != nil || !ok)
{
klog.Errorf("/sbin/vdpa -j dev list returned bad JSON (error %v): %v", err, string(devListJSON))
return
}
for _, stateFile := range matches
{
vdpaId := filepath.Base(stateFile)
vdpaId = vdpaId[0:len(vdpaId)-5]
// Check if VDPA device is still added to the bus
if (devs[vdpaId] == nil)
{
// Unused, clean it up
unmapVduseById(ns.stateDir, vdpaId)
continue
}
stateJSON, err := os.ReadFile(stateFile)
if (err != nil)
{
klog.Warningf("error reading state file %v: %v", stateFile, err)
continue
}
var state DeviceState
err = json.Unmarshal(stateJSON, &state)
if (err != nil)
{
klog.Warningf("state file %v contains invalid JSON (error %v): %v", stateFile, err, string(stateJSON))
continue
}
ns.lockVolume(state.ConfigPath+":"+state.Image)
// Recheck state file after locking
_, err = os.ReadFile(stateFile)
if (err != nil)
{
klog.Warningf("state file %v disappeared, skipping volume", stateFile)
ns.unlockVolume(state.ConfigPath+":"+state.Image)
continue
}
// Check if the storage daemon is still active
pidFile := ns.stateDir + vdpaId + ".pid"
exists := false
proc, err := findByPidFile(pidFile)
if (err == nil)
{
exists = proc.Signal(syscall.Signal(0)) == nil
}
if (!exists)
{
// Restart daemon
klog.Warningf("restarting storage daemon for volume %v (VDPA ID %v)", state.Image, vdpaId)
_ = startStorageDaemon(vdpaId, state.Image, pidFile, state.ConfigPath, state.Readonly)
}
ns.unlockVolume(state.ConfigPath+":"+state.Image)
} }
} }
// NodeStageVolume mounts the volume to a staging path on the node. // NodeStageVolume mounts the volume to a staging path on the node.
func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVolumeRequest) (*csi.NodeStageVolumeResponse, error) func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVolumeRequest) (*csi.NodeStageVolumeResponse, error)
{ {
klog.Infof("received node stage volume request %+v", protosanitizer.StripSecrets(req)) return &csi.NodeStageVolumeResponse{}, nil
}
ctxVars := make(map[string]string) // NodeUnstageVolume unstages the volume from the staging path
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars) func (ns *NodeServer) NodeUnstageVolume(ctx context.Context, req *csi.NodeUnstageVolumeRequest) (*csi.NodeUnstageVolumeResponse, error)
if (err != nil) {
return &csi.NodeUnstageVolumeResponse{}, nil
}
func Contains(list []string, s string) bool
{
for i := 0; i < len(list); i++
{ {
return nil, status.Error(codes.Internal, "volume ID not in JSON format") if (list[i] == s)
}
_, err = GetConnectionParams(ctxVars)
if (err != nil)
{ {
return nil, err return true
} }
volName := ctxVars["name"] }
return false
}
ns.lockVolume(ctxVars["configPath"]+":"+volName) // NodePublishVolume mounts the volume mounted to the staging path to the target path
defer ns.unlockVolume(ctxVars["configPath"]+":"+volName) func (ns *NodeServer) NodePublishVolume(ctx context.Context, req *csi.NodePublishVolumeRequest) (*csi.NodePublishVolumeResponse, error)
{
klog.Infof("received node publish volume request %+v", protosanitizer.StripSecrets(req))
targetPath := req.GetStagingTargetPath() targetPath := req.GetTargetPath()
isBlock := req.GetVolumeCapability().GetBlock() != nil isBlock := req.GetVolumeCapability().GetBlock() != nil
// Check that it's not already mounted // Check that it's not already mounted
notmnt, err := mount.IsNotMountPoint(ns.mounter, targetPath) _, error := mount.IsNotMountPoint(ns.mounter, targetPath)
if (err == nil) if (error != nil)
{ {
if (!notmnt) if (os.IsNotExist(error))
{
klog.Errorf("target path %s is already mounted", targetPath)
return nil, fmt.Errorf("target path %s is already mounted", targetPath)
}
var finfo os.FileInfo
finfo, err = os.Stat(targetPath)
if (err != nil)
{
klog.Errorf("failed to stat %s: %v", targetPath, err)
return nil, err
}
if (finfo.IsDir() != (!isBlock))
{
err = os.Remove(targetPath)
if (err != nil)
{
klog.Errorf("failed to remove %s (to recreate it with correct type): %v", targetPath, err)
return nil, err
}
err = os.ErrNotExist
}
}
if (err != nil)
{
if (os.IsNotExist(err))
{ {
if (isBlock) if (isBlock)
{ {
@ -263,13 +81,13 @@ func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVol
if (err != nil) if (err != nil)
{ {
klog.Errorf("failed to create block device mount target %s with error: %v", targetPath, err) klog.Errorf("failed to create block device mount target %s with error: %v", targetPath, err)
return nil, err return nil, status.Error(codes.Internal, err.Error())
} }
err = pathFile.Close() err = pathFile.Close()
if (err != nil) if (err != nil)
{ {
klog.Errorf("failed to close %s with error: %v", targetPath, err) klog.Errorf("failed to close %s with error: %v", targetPath, err)
return nil, err return nil, status.Error(codes.Internal, err.Error())
} }
} }
else else
@ -278,44 +96,70 @@ func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVol
if (err != nil) if (err != nil)
{ {
klog.Errorf("failed to create fs mount target %s with error: %v", targetPath, err) klog.Errorf("failed to create fs mount target %s with error: %v", targetPath, err)
return nil, err return nil, status.Error(codes.Internal, err.Error())
} }
} }
} }
else else
{ {
return nil, err return nil, status.Error(codes.Internal, error.Error())
} }
} }
var devicePath, vdpaId string ctxVars := make(map[string]string)
if (!ns.useVduse) err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
{
devicePath, err = mapNbd(volName, ctxVars, false)
}
else
{
devicePath, vdpaId, err = mapVduse(ns.stateDir, volName, ctxVars, false)
}
if (err != nil) if (err != nil)
{ {
return nil, err return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
_, etcdUrl, etcdPrefix := GetConnectionParams(ctxVars)
if (len(etcdUrl) == 0)
{
return nil, status.Error(codes.InvalidArgument, "no etcdUrl in storage class configuration and no etcd_address in vitastor.conf")
} }
diskMounter := &mount.SafeFormatAndMount{Interface: ns.mounter, Exec: utilexec.New()} // Map NBD device
if (isBlock) // FIXME: Check if already mapped
args := []string{
"map", "--etcd_address", strings.Join(etcdUrl, ","),
"--etcd_prefix", etcdPrefix,
"--image", volName,
};
if (ctxVars["configPath"] != "")
{ {
klog.Infof("bind-mounting %s to %s", devicePath, targetPath) args = append(args, "--config_path", ctxVars["configPath"])
err = diskMounter.Mount(devicePath, targetPath, "", []string{"bind"})
} }
else if (req.GetReadonly())
{ {
args = append(args, "--readonly", "1")
}
c := exec.Command("/usr/bin/vitastor-nbd", args...)
var stdout, stderr bytes.Buffer
c.Stdout, c.Stderr = &stdout, &stderr
err = c.Run()
stdoutStr, stderrStr := string(stdout.Bytes()), string(stderr.Bytes())
if (err != nil)
{
klog.Errorf("vitastor-nbd map failed: %s, status %s\n", stdoutStr+stderrStr, err)
return nil, status.Error(codes.Internal, stdoutStr+stderrStr+" (status "+err.Error()+")")
}
devicePath := strings.TrimSpace(stdoutStr)
// Check existing format // Check existing format
diskMounter := &mount.SafeFormatAndMount{Interface: ns.mounter, Exec: utilexec.New()}
existingFormat, err := diskMounter.GetDiskFormat(devicePath) existingFormat, err := diskMounter.GetDiskFormat(devicePath)
if (err != nil) if (err != nil)
{ {
klog.Errorf("failed to get disk format for path %s, error: %v", err) klog.Errorf("failed to get disk format for path %s, error: %v", err)
goto unmap // unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
return nil, err
} }
// Format the device (ext4 or xfs) // Format the device (ext4 or xfs)
@ -335,43 +179,38 @@ func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVol
readOnly := Contains(opt, "ro") readOnly := Contains(opt, "ro")
if (existingFormat == "" && !readOnly) if (existingFormat == "" && !readOnly)
{ {
args := []string{}
switch fsType switch fsType
{ {
case "ext4": case "ext4":
args := []string{"-m0", "-Enodiscard,lazy_itable_init=1,lazy_journal_init=1", devicePath} args = []string{"-m0", "-Enodiscard,lazy_itable_init=1,lazy_journal_init=1", devicePath}
_, err = systemCombined("mkfs.ext4", args...)
case "xfs": case "xfs":
_, err = systemCombined("mkfs.xfs", "-K", devicePath) args = []string{"-K", devicePath}
} }
if (err != nil) if (len(args) > 0)
{ {
goto unmap cmdOut, cmdErr := diskMounter.Exec.Command("mkfs."+fsType, args...).CombinedOutput()
if (cmdErr != nil)
{
klog.Errorf("failed to run mkfs error: %v, output: %v", cmdErr, string(cmdOut))
// unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
return nil, status.Error(codes.Internal, cmdErr.Error())
} }
} }
}
klog.Infof("formatting and mounting %s to %s with FS %s, options: %v", devicePath, targetPath, fsType, opt) if (isBlock)
{
opt = append(opt, "bind")
err = diskMounter.Mount(devicePath, targetPath, fsType, opt)
}
else
{
err = diskMounter.FormatAndMount(devicePath, targetPath, fsType, opt) err = diskMounter.FormatAndMount(devicePath, targetPath, fsType, opt)
if (err == nil)
{
klog.Infof("successfully mounted %s to %s", devicePath, targetPath)
}
// Try to run online resize on mount.
// FIXME: Implement online resize. It requires online resize support in vitastor-nbd.
if (err == nil && existingFormat != "" && !readOnly)
{
switch (fsType)
{
case "ext4":
_, err = systemCombined("resize2fs", devicePath)
case "xfs":
_, err = systemCombined("xfs_growfs", devicePath)
}
if (err != nil)
{
goto unmap
}
}
} }
if (err != nil) if (err != nil)
{ {
@ -379,183 +218,14 @@ func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVol
"failed to mount device path (%s) to path (%s) for volume (%s) error: %s", "failed to mount device path (%s) to path (%s) for volume (%s) error: %s",
devicePath, targetPath, volName, err, devicePath, targetPath, volName, err,
) )
goto unmap // unmap NBD device
} unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
return &csi.NodeStageVolumeResponse{}, nil if (unmapErr != nil)
unmap:
if (!ns.useVduse || len(devicePath) >= 8 && devicePath[0:8] == "/dev/nbd")
{ {
unmapNbd(devicePath) klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
} }
else return nil, status.Error(codes.Internal, err.Error())
{
unmapVduseById(ns.stateDir, vdpaId)
} }
return nil, err
}
// NodeUnstageVolume unstages the volume from the staging path
func (ns *NodeServer) NodeUnstageVolume(ctx context.Context, req *csi.NodeUnstageVolumeRequest) (*csi.NodeUnstageVolumeResponse, error)
{
klog.Infof("received node unstage volume request %+v", protosanitizer.StripSecrets(req))
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
ns.lockVolume(ctxVars["configPath"]+":"+volName)
defer ns.unlockVolume(ctxVars["configPath"]+":"+volName)
targetPath := req.GetStagingTargetPath()
devicePath, _, err := mount.GetDeviceNameFromMount(ns.mounter, targetPath)
if (err != nil)
{
if (os.IsNotExist(err))
{
return nil, status.Error(codes.NotFound, "Target path not found")
}
return nil, err
}
if (devicePath == "")
{
// volume not mounted
klog.Warningf("%s is not a mountpoint, deleting", targetPath)
os.Remove(targetPath)
return &csi.NodeUnstageVolumeResponse{}, nil
}
refList, err := ns.mounter.GetMountRefs(targetPath)
if (err != nil)
{
return nil, err
}
if (len(refList) > 0)
{
klog.Warningf("%s is still referenced: %v", targetPath, refList)
}
// unmount
err = mount.CleanupMountPoint(targetPath, ns.mounter, false)
if (err != nil)
{
return nil, err
}
// unmap device
if (len(refList) == 0)
{
if (!ns.useVduse)
{
unmapNbd(devicePath)
}
else
{
unmapVduse(ns.stateDir, devicePath)
}
}
return &csi.NodeUnstageVolumeResponse{}, nil
}
// NodePublishVolume mounts the volume mounted to the staging path to the target path
func (ns *NodeServer) NodePublishVolume(ctx context.Context, req *csi.NodePublishVolumeRequest) (*csi.NodePublishVolumeResponse, error)
{
klog.Infof("received node publish volume request %+v", protosanitizer.StripSecrets(req))
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
_, err = GetConnectionParams(ctxVars)
if (err != nil)
{
return nil, err
}
volName := ctxVars["name"]
ns.lockVolume(ctxVars["configPath"]+":"+volName)
defer ns.unlockVolume(ctxVars["configPath"]+":"+volName)
stagingTargetPath := req.GetStagingTargetPath()
targetPath := req.GetTargetPath()
isBlock := req.GetVolumeCapability().GetBlock() != nil
// Check that stagingTargetPath is mounted
notmnt, err := mount.IsNotMountPoint(ns.mounter, stagingTargetPath)
if (err != nil)
{
klog.Errorf("staging path %v is not mounted: %w", stagingTargetPath, err)
return nil, fmt.Errorf("staging path %v is not mounted: %w", stagingTargetPath, err)
}
else if (notmnt)
{
klog.Errorf("staging path %v is not mounted", stagingTargetPath)
return nil, fmt.Errorf("staging path %v is not mounted", stagingTargetPath)
}
// Check that targetPath is not already mounted
notmnt, err = mount.IsNotMountPoint(ns.mounter, targetPath)
if (err != nil)
{
if (os.IsNotExist(err))
{
if (isBlock)
{
pathFile, err := os.OpenFile(targetPath, os.O_CREATE|os.O_RDWR, 0o600)
if (err != nil)
{
klog.Errorf("failed to create block device mount target %s with error: %v", targetPath, err)
return nil, err
}
err = pathFile.Close()
if (err != nil)
{
klog.Errorf("failed to close %s with error: %v", targetPath, err)
return nil, err
}
}
else
{
err := os.MkdirAll(targetPath, 0777)
if (err != nil)
{
klog.Errorf("failed to create fs mount target %s with error: %v", targetPath, err)
return nil, err
}
}
}
else
{
return nil, err
}
}
else if (!notmnt)
{
klog.Errorf("target path %s is already mounted", targetPath)
return nil, fmt.Errorf("target path %s is already mounted", targetPath)
}
execArgs := []string{"--bind", stagingTargetPath, targetPath}
if (req.GetReadonly())
{
execArgs = append(execArgs, "-o", "ro")
}
cmd := exec.Command("mount", execArgs...)
cmd.Stderr = os.Stderr
klog.Infof("binding volume %v (%v) from %v to %v", volName, ctxVars["configPath"], stagingTargetPath, targetPath)
out, err := cmd.Output()
if (err != nil)
{
return nil, fmt.Errorf("Error running mount %v: %s", strings.Join(execArgs, " "), out)
}
return &csi.NodePublishVolumeResponse{}, nil return &csi.NodePublishVolumeResponse{}, nil
} }
@ -563,43 +233,35 @@ func (ns *NodeServer) NodePublishVolume(ctx context.Context, req *csi.NodePublis
func (ns *NodeServer) NodeUnpublishVolume(ctx context.Context, req *csi.NodeUnpublishVolumeRequest) (*csi.NodeUnpublishVolumeResponse, error) func (ns *NodeServer) NodeUnpublishVolume(ctx context.Context, req *csi.NodeUnpublishVolumeRequest) (*csi.NodeUnpublishVolumeResponse, error)
{ {
klog.Infof("received node unpublish volume request %+v", protosanitizer.StripSecrets(req)) klog.Infof("received node unpublish volume request %+v", protosanitizer.StripSecrets(req))
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
ns.lockVolume(ctxVars["configPath"]+":"+volName)
defer ns.unlockVolume(ctxVars["configPath"]+":"+volName)
targetPath := req.GetTargetPath() targetPath := req.GetTargetPath()
devicePath, _, err := mount.GetDeviceNameFromMount(ns.mounter, targetPath) devicePath, refCount, err := mount.GetDeviceNameFromMount(ns.mounter, targetPath)
if (err != nil) if (err != nil)
{ {
if (os.IsNotExist(err)) if (os.IsNotExist(err))
{ {
return nil, status.Error(codes.NotFound, "Target path not found") return nil, status.Error(codes.NotFound, "Target path not found")
} }
return nil, err return nil, status.Error(codes.Internal, err.Error())
} }
if (devicePath == "") if (devicePath == "")
{ {
// volume not mounted return nil, status.Error(codes.NotFound, "Volume not mounted")
klog.Warningf("%s is not a mountpoint, deleting", targetPath)
os.Remove(targetPath)
return &csi.NodeUnpublishVolumeResponse{}, nil
} }
// unmount // unmount
err = mount.CleanupMountPoint(targetPath, ns.mounter, false) err = mount.CleanupMountPoint(targetPath, ns.mounter, false)
if (err != nil) if (err != nil)
{ {
return nil, err return nil, status.Error(codes.Internal, err.Error())
}
// unmap NBD device
if (refCount == 1)
{
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
} }
return &csi.NodeUnpublishVolumeResponse{}, nil return &csi.NodeUnpublishVolumeResponse{}, nil
} }
@ -618,17 +280,7 @@ func (ns *NodeServer) NodeExpandVolume(ctx context.Context, req *csi.NodeExpandV
// NodeGetCapabilities returns the supported capabilities of the node server // NodeGetCapabilities returns the supported capabilities of the node server
func (ns *NodeServer) NodeGetCapabilities(ctx context.Context, req *csi.NodeGetCapabilitiesRequest) (*csi.NodeGetCapabilitiesResponse, error) func (ns *NodeServer) NodeGetCapabilities(ctx context.Context, req *csi.NodeGetCapabilitiesRequest) (*csi.NodeGetCapabilitiesResponse, error)
{ {
return &csi.NodeGetCapabilitiesResponse{ return &csi.NodeGetCapabilitiesResponse{}, nil
Capabilities: []*csi.NodeServiceCapability{
&csi.NodeServiceCapability{
Type: &csi.NodeServiceCapability_Rpc{
Rpc: &csi.NodeServiceCapability_RPC{
Type: csi.NodeServiceCapability_RPC_STAGE_UNSTAGE_VOLUME,
},
},
},
},
}, nil
} }
// NodeGetInfo returns NodeGetInfoResponse for CO. // NodeGetInfo returns NodeGetInfoResponse for CO.

View File

@ -1,342 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
import (
"bytes"
"errors"
"encoding/json"
"fmt"
"os"
"os/exec"
"path/filepath"
"strconv"
"strings"
"syscall"
"k8s.io/klog"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
)
func Contains(list []string, s string) bool
{
for i := 0; i < len(list); i++
{
if (list[i] == s)
{
return true
}
}
return false
}
func checkVduseSupport() bool
{
// Check VDUSE support (vdpa, vduse, virtio-vdpa kernel modules)
vduse := true
for _, mod := range []string{"vdpa", "vduse", "virtio-vdpa"}
{
_, err := os.Stat("/sys/module/"+mod)
if (err != nil)
{
if (!errors.Is(err, os.ErrNotExist))
{
klog.Errorf("failed to check /sys/module/%s: %v", mod, err)
}
c := exec.Command("/sbin/modprobe", mod)
c.Stdout = os.Stderr
c.Stderr = os.Stderr
err := c.Run()
if (err != nil)
{
klog.Errorf("/sbin/modprobe %s failed: %v", mod, err)
vduse = false
break
}
}
}
// Check that vdpa tool functions
if (vduse)
{
c := exec.Command("/sbin/vdpa", "-j", "dev")
c.Stderr = os.Stderr
err := c.Run()
if (err != nil)
{
klog.Errorf("/sbin/vdpa -j dev failed: %v", err)
vduse = false
}
}
if (!vduse)
{
klog.Errorf(
"Your host apparently has no VDUSE support. VDUSE support disabled, NBD will be used to map devices."+
" For VDUSE you need at least Linux 5.15 and the following kernel modules: vdpa, virtio-vdpa, vduse.",
)
}
else
{
klog.Infof("VDUSE support enabled successfully")
}
return vduse
}
func mapNbd(volName string, ctxVars map[string]string, readonly bool) (string, error)
{
// Map NBD device
// FIXME: Check if already mapped
args := []string{
"map", "--image", volName,
}
if (ctxVars["configPath"] != "")
{
args = append(args, "--config_path", ctxVars["configPath"])
}
if (readonly)
{
args = append(args, "--readonly", "1")
}
stdout, stderr, err := system("/usr/bin/vitastor-nbd", args...)
dev := strings.TrimSpace(string(stdout))
if (dev == "")
{
return "", fmt.Errorf("vitastor-nbd did not return the name of NBD device. output: %s", stderr)
}
klog.Infof("Attached volume %s via NBD as %s", volName, dev)
return dev, err
}
func unmapNbd(devicePath string)
{
// unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
}
func findByPidFile(pidFile string) (*os.Process, error)
{
pidBuf, err := os.ReadFile(pidFile)
if (err != nil)
{
return nil, err
}
pid, err := strconv.ParseInt(strings.TrimSpace(string(pidBuf)), 0, 64)
if (err != nil)
{
return nil, err
}
proc, err := os.FindProcess(int(pid))
if (err != nil)
{
return nil, err
}
return proc, nil
}
func killByPidFile(pidFile string) error
{
klog.Infof("killing process with PID from file %s", pidFile)
proc, err := findByPidFile(pidFile)
if (err != nil)
{
return err
}
return proc.Signal(syscall.SIGTERM)
}
func startStorageDaemon(vdpaId, volName, pidFile, configPath string, readonly bool) error
{
// Start qemu-storage-daemon
blockSpec := map[string]interface{}{
"node-name": "disk1",
"driver": "vitastor",
"image": volName,
"cache": map[string]bool{
"direct": true,
"no-flush": false,
},
"discard": "unmap",
}
if (configPath != "")
{
blockSpec["config-path"] = configPath
}
blockSpecJson, _ := json.Marshal(blockSpec)
writable := "true"
if (readonly)
{
writable = "false"
}
_, _, err := system(
"/usr/bin/qemu-storage-daemon", "--daemonize", "--pidfile", pidFile, "--blockdev", string(blockSpecJson),
"--export", "vduse-blk,id="+vdpaId+",node-name=disk1,name="+vdpaId+",num-queues=16,queue-size=128,writable="+writable,
)
return err
}
func mapVduse(stateDir string, volName string, ctxVars map[string]string, readonly bool) (string, string, error)
{
// Generate state file
stateFd, err := os.CreateTemp(stateDir, "vitastor-vduse-*.json")
if (err != nil)
{
return "", "", err
}
stateFile := stateFd.Name()
stateFd.Close()
vdpaId := filepath.Base(stateFile)
vdpaId = vdpaId[0:len(vdpaId)-5] // remove ".json"
pidFile := stateDir + vdpaId + ".pid"
// Map VDUSE device via qemu-storage-daemon
err = startStorageDaemon(vdpaId, volName, pidFile, ctxVars["configPath"], readonly)
if (err == nil)
{
// Add device to VDPA bus
_, _, err = system("/sbin/vdpa", "-j", "dev", "add", "name", vdpaId, "mgmtdev", "vduse")
if (err == nil)
{
// Find block device name
var matches []string
matches, err = filepath.Glob("/sys/bus/vdpa/devices/"+vdpaId+"/virtio*/block/*")
if (err == nil && len(matches) == 0)
{
err = errors.New("/sys/bus/vdpa/devices/"+vdpaId+"/virtio*/block/* is not found")
}
if (err == nil)
{
blockdev := "/dev/"+filepath.Base(matches[0])
_, err = os.Stat(blockdev)
if (err == nil)
{
// Generate state file
stateJSON, _ := json.Marshal(&DeviceState{
ConfigPath: ctxVars["configPath"],
VdpaId: vdpaId,
Image: volName,
Blockdev: blockdev,
Readonly: readonly,
PidFile: pidFile,
})
err = os.WriteFile(stateFile, stateJSON, 0600)
if (err == nil)
{
klog.Infof("Attached volume %s via VDUSE as %s (VDPA ID %s)", volName, blockdev, vdpaId)
return blockdev, vdpaId, nil
}
}
}
}
killErr := killByPidFile(pidFile)
if (killErr != nil)
{
klog.Errorf("Failed to kill started qemu-storage-daemon: %v", killErr)
}
os.Remove(stateFile)
os.Remove(pidFile)
}
return "", "", err
}
func unmapVduse(stateDir, devicePath string)
{
if (len(devicePath) < 6 || devicePath[0:6] != "/dev/v")
{
klog.Errorf("%s does not start with /dev/v", devicePath)
return
}
vduseDev, err := os.Readlink("/sys/block/"+devicePath[5:])
if (err != nil)
{
klog.Errorf("%s is not a symbolic link to VDUSE device (../devices/virtual/vduse/xxx): %v", devicePath, err)
return
}
vdpaId := ""
p := strings.Index(vduseDev, "/vduse/")
if (p >= 0)
{
vduseDev = vduseDev[p+7:]
p = strings.Index(vduseDev, "/")
if (p >= 0)
{
vdpaId = vduseDev[0:p]
}
}
if (vdpaId == "")
{
klog.Errorf("%s is not a symbolic link to VDUSE device (../devices/virtual/vduse/xxx), but is %v", devicePath, vduseDev)
return
}
unmapVduseById(stateDir, vdpaId)
}
func unmapVduseById(stateDir, vdpaId string)
{
_, err := os.Stat("/sys/bus/vdpa/devices/"+vdpaId)
if (err != nil)
{
klog.Errorf("failed to stat /sys/bus/vdpa/devices/"+vdpaId+": %v", err)
}
else
{
_, _, _ = system("/sbin/vdpa", "-j", "dev", "del", vdpaId)
}
stateFile := stateDir + vdpaId + ".json"
os.Remove(stateFile)
pidFile := stateDir + vdpaId + ".pid"
_, err = os.Stat(pidFile)
if (os.IsNotExist(err))
{
// ok, already killed
}
else if (err != nil)
{
klog.Errorf("Failed to stat %v: %v", pidFile, err)
return
}
else
{
err = killByPidFile(pidFile)
if (err != nil)
{
klog.Errorf("Failed to kill started qemu-storage-daemon: %v", err)
}
os.Remove(pidFile)
}
}
func system(program string, args ...string) ([]byte, []byte, error)
{
klog.Infof("Running "+program+" "+strings.Join(args, " "))
c := exec.Command(program, args...)
var stdout, stderr bytes.Buffer
c.Stdout, c.Stderr = &stdout, &stderr
err := c.Run()
if (err != nil)
{
stdoutStr, stderrStr := string(stdout.Bytes()), string(stderr.Bytes())
klog.Errorf(program+" "+strings.Join(args, " ")+" failed: %s\nOutput:\n%s", err, stdoutStr+stderrStr)
return nil, nil, status.Error(codes.Internal, stdoutStr+stderrStr+" (status "+err.Error()+")")
}
return stdout.Bytes(), stderr.Bytes(), nil
}
func systemCombined(program string, args ...string) ([]byte, error)
{
klog.Infof("Running "+program+" "+strings.Join(args, " "))
c := exec.Command(program, args...)
var out bytes.Buffer
c.Stdout, c.Stderr = &out, &out
err := c.Run()
if (err != nil)
{
outStr := string(out.Bytes())
klog.Errorf(program+" "+strings.Join(args, " ")+" failed: %s, status %s\n", outStr, err)
return nil, status.Error(codes.Internal, outStr+" (status "+err.Error()+")")
}
return out.Bytes(), nil
}

View File

@ -3,5 +3,5 @@
cat < vitastor.Dockerfile > ../Dockerfile cat < vitastor.Dockerfile > ../Dockerfile
cd .. cd ..
mkdir -p packages mkdir -p packages
sudo podman build --build-arg DISTRO=debian --build-arg REL=bookworm -v `pwd`/packages:/root/packages -f Dockerfile . sudo podman build --build-arg REL=bookworm -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile rm Dockerfile

View File

@ -3,5 +3,5 @@
cat < vitastor.Dockerfile > ../Dockerfile cat < vitastor.Dockerfile > ../Dockerfile
cd .. cd ..
mkdir -p packages mkdir -p packages
sudo podman build --build-arg DISTRO=debian --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f Dockerfile . sudo podman build --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile rm Dockerfile

View File

@ -3,5 +3,5 @@
cat < vitastor.Dockerfile > ../Dockerfile cat < vitastor.Dockerfile > ../Dockerfile
cd .. cd ..
mkdir -p packages mkdir -p packages
sudo podman build --build-arg DISTRO=debian --build-arg REL=buster -v `pwd`/packages:/root/packages -f Dockerfile . sudo podman build --build-arg REL=buster -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile rm Dockerfile

View File

@ -1,7 +0,0 @@
#!/bin/bash
cat < vitastor.Dockerfile > ../Dockerfile
cd ..
mkdir -p packages
sudo podman build --build-arg DISTRO=ubuntu --build-arg REL=jammy -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile

4
debian/changelog vendored
View File

@ -1,10 +1,10 @@
vitastor (1.9.3-1) unstable; urgency=medium vitastor (0.9.2-1) unstable; urgency=medium
* Bugfixes * Bugfixes
-- Vitaliy Filippov <vitalif@yourcmc.ru> Fri, 03 Jun 2022 02:09:44 +0300 -- Vitaliy Filippov <vitalif@yourcmc.ru> Fri, 03 Jun 2022 02:09:44 +0300
vitastor (0.7.0-1) unstable; urgency=medium vitastor (0.9.2-1) unstable; urgency=medium
* Implement NFS proxy * Implement NFS proxy
* Add documentation * Add documentation

8
debian/control vendored
View File

@ -2,7 +2,7 @@ Source: vitastor
Section: admin Section: admin
Priority: optional Priority: optional
Maintainer: Vitaliy Filippov <vitalif@yourcmc.ru> Maintainer: Vitaliy Filippov <vitalif@yourcmc.ru>
Build-Depends: debhelper, liburing-dev (>= 0.6), g++ (>= 8), libstdc++6 (>= 8), linux-libc-dev, libgoogle-perftools-dev, libjerasure-dev, libgf-complete-dev, libibverbs-dev, libisal-dev, cmake, pkg-config, libnl-3-dev, libnl-genl-3-dev Build-Depends: debhelper, liburing-dev (>= 0.6), g++ (>= 8), libstdc++6 (>= 8), linux-libc-dev, libgoogle-perftools-dev, libjerasure-dev, libgf-complete-dev, libibverbs-dev, libisal-dev
Standards-Version: 4.5.0 Standards-Version: 4.5.0
Homepage: https://vitastor.io/ Homepage: https://vitastor.io/
Rules-Requires-Root: no Rules-Requires-Root: no
@ -53,9 +53,3 @@ Architecture: amd64
Depends: ${shlibs:Depends}, ${misc:Depends}, vitastor-client (= ${binary:Version}) Depends: ${shlibs:Depends}, ${misc:Depends}, vitastor-client (= ${binary:Version})
Description: Vitastor Proxmox Virtual Environment storage plugin Description: Vitastor Proxmox Virtual Environment storage plugin
Vitastor storage plugin for Proxmox Virtual Environment. Vitastor storage plugin for Proxmox Virtual Environment.
Package: vitastor-opennebula
Architecture: amd64
Depends: ${shlibs:Depends}, ${misc:Depends}, vitastor-client, patch, python3, jq
Description: Vitastor OpenNebula storage plugin
Vitastor storage plugin for OpenNebula.

View File

@ -1,14 +1,13 @@
# Build patched libvirt for Debian Buster or Bullseye/Sid inside a container # Build patched libvirt for Debian Buster or Bullseye/Sid inside a container
# cd ..; podman build --build-arg DISTRO=debian --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/libvirt.Dockerfile . # cd ..; podman build --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/libvirt.Dockerfile .
ARG DISTRO=
ARG REL= ARG REL=
FROM $DISTRO:$REL FROM debian:$REL
ARG REL= ARG REL=
WORKDIR /root WORKDIR /root
RUN if ([ "${DISTRO}" = "debian" ]) && ( [ "${REL}" = "buster" -o "${REL}" = "bullseye" ] ); then \ RUN if [ "$REL" = "buster" -o "$REL" = "bullseye" ]; then \
echo "deb http://deb.debian.org/debian $REL-backports main" >> /etc/apt/sources.list; \ echo "deb http://deb.debian.org/debian $REL-backports main" >> /etc/apt/sources.list; \
echo >> /etc/apt/preferences; \ echo >> /etc/apt/preferences; \
echo 'Package: *' >> /etc/apt/preferences; \ echo 'Package: *' >> /etc/apt/preferences; \
@ -24,7 +23,7 @@ RUN apt-get -y build-dep libvirt0
RUN apt-get -y install libglusterfs-dev RUN apt-get -y install libglusterfs-dev
RUN apt-get --download-only source libvirt RUN apt-get --download-only source libvirt
ADD patches/libvirt-5.0-vitastor.diff patches/libvirt-7.0-vitastor.diff patches/libvirt-7.5-vitastor.diff patches/libvirt-7.6-vitastor.diff patches/libvirt-8.0-vitastor.diff /root ADD patches/libvirt-5.0-vitastor.diff patches/libvirt-7.0-vitastor.diff patches/libvirt-7.5-vitastor.diff patches/libvirt-7.6-vitastor.diff /root
RUN set -e; \ RUN set -e; \
mkdir -p /root/packages/libvirt-$REL; \ mkdir -p /root/packages/libvirt-$REL; \
rm -rf /root/packages/libvirt-$REL/*; \ rm -rf /root/packages/libvirt-$REL/*; \

View File

@ -7,7 +7,7 @@ ARG REL=
WORKDIR /root WORKDIR /root
RUN if [ "$REL" = "buster" -o "$REL" = "bullseye" -o "$REL" = "bookworm" ]; then \ RUN if [ "$REL" = "buster" -o "$REL" = "bullseye" ]; then \
echo "deb http://deb.debian.org/debian $REL-backports main" >> /etc/apt/sources.list; \ echo "deb http://deb.debian.org/debian $REL-backports main" >> /etc/apt/sources.list; \
echo >> /etc/apt/preferences; \ echo >> /etc/apt/preferences; \
echo 'Package: *' >> /etc/apt/preferences; \ echo 'Package: *' >> /etc/apt/preferences; \
@ -27,35 +27,28 @@ RUN apt-get -y build-dep qemu
RUN apt-get --download-only source qemu RUN apt-get --download-only source qemu
ADD patches /root/vitastor/patches ADD patches /root/vitastor/patches
ADD src/client/qemu_driver.c /root/qemu_driver.c ADD src/qemu_driver.c /root/vitastor/src/qemu_driver.c
#RUN set -e; \
# apt-get install -y wget; \
# wget -q -O /etc/apt/trusted.gpg.d/vitastor.gpg https://vitastor.io/debian/pubkey.gpg; \
# (echo deb http://vitastor.io/debian $REL main > /etc/apt/sources.list.d/vitastor.list); \
# (echo "APT::Install-Recommends false;" > /etc/apt/apt.conf) && \
# apt-get update; \
# apt-get install -y vitastor-client vitastor-client-dev quilt
RUN set -e; \ RUN set -e; \
dpkg -i /root/packages/vitastor-$REL/vitastor-client_*.deb /root/packages/vitastor-$REL/vitastor-client-dev_*.deb; \ apt-get install -y wget; \
wget -q -O /etc/apt/trusted.gpg.d/vitastor.gpg https://vitastor.io/debian/pubkey.gpg; \
(echo deb http://vitastor.io/debian $REL main > /etc/apt/sources.list.d/vitastor.list); \
(echo "APT::Install-Recommends false;" > /etc/apt/apt.conf) && \
apt-get update; \ apt-get update; \
apt-get install -y quilt; \ apt-get install -y vitastor-client vitastor-client-dev quilt; \
mkdir -p /root/packages/qemu-$REL; \ mkdir -p /root/packages/qemu-$REL; \
rm -rf /root/packages/qemu-$REL/*; \ rm -rf /root/packages/qemu-$REL/*; \
cd /root/packages/qemu-$REL; \ cd /root/packages/qemu-$REL; \
dpkg-source -x /root/qemu*.dsc; \ dpkg-source -x /root/qemu*.dsc; \
QEMU_VER=$(ls -d qemu*/ | perl -pe 's!^.*?(\d+\.\d+).*!$1!'); \ QEMU_VER=$(ls -d qemu*/ | perl -pe 's!^.*(\d+\.\d+).*!$1!'); \
D=$(ls -d qemu*/); \ D=$(ls -d qemu*/); \
cp /root/vitastor/patches/qemu-$QEMU_VER-vitastor.patch ./qemu-*/debian/patches; \ cp /root/vitastor/patches/qemu-$QEMU_VER-vitastor.patch ./qemu-*/debian/patches; \
echo qemu-$QEMU_VER-vitastor.patch >> $D/debian/patches/series; \ echo qemu-$QEMU_VER-vitastor.patch >> $D/debian/patches/series; \
cd /root/packages/qemu-$REL/qemu-*/; \ cd /root/packages/qemu-$REL/qemu-*/; \
quilt push -a; \ quilt push -a; \
quilt add block/vitastor.c; \ quilt add block/vitastor.c; \
cp /root/qemu_driver.c block/vitastor.c; \ cp /root/vitastor/src/qemu_driver.c block/vitastor.c; \
quilt refresh; \ quilt refresh; \
V=$(head -n1 debian/changelog | perl -pe 's/5\.2\+dfsg-9/5.2+dfsg-11/; s/^.*\((.*?)(~bpo[\d\+]*)?\).*$/$1/')+vitastor4; \ V=$(head -n1 debian/changelog | perl -pe 's/^.*\((.*?)(~bpo[\d\+]*)?\).*$/$1/')+vitastor1; \
if [ "$REL" = bullseye ]; then V=${V}bullseye; fi; \
DEBEMAIL="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v $V 'Plug Vitastor block driver'; \ DEBEMAIL="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v $V 'Plug Vitastor block driver'; \
DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \ DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \
rm -rf /root/packages/qemu-$REL/qemu-*/ rm -rf /root/packages/qemu-$REL/qemu-*/

View File

@ -3,6 +3,4 @@ usr/bin/vitastor-cli
usr/bin/vitastor-rm usr/bin/vitastor-rm
usr/bin/vitastor-nbd usr/bin/vitastor-nbd
usr/bin/vitastor-nfs usr/bin/vitastor-nfs
usr/bin/vitastor-kv
usr/bin/vitastor-kv-stress
usr/lib/*/libvitastor*.so* usr/lib/*/libvitastor*.so*

View File

@ -1,3 +1,2 @@
mon usr/lib/vitastor/ mon usr/lib/vitastor
mon/scripts/make-etcd usr/lib/vitastor/mon mon/vitastor-mon.service /lib/systemd/system
mon/scripts/vitastor-mon.service /lib/systemd/system

View File

@ -6,6 +6,4 @@ if [ "$1" = "configure" ]; then
addgroup --system --quiet vitastor addgroup --system --quiet vitastor
adduser --system --quiet --ingroup vitastor --no-create-home --home /nonexistent vitastor adduser --system --quiet --ingroup vitastor --no-create-home --home /nonexistent vitastor
mkdir -p /etc/vitastor mkdir -p /etc/vitastor
mkdir -p /var/lib/vitastor
chown vitastor:vitastor /var/lib/vitastor
fi fi

View File

@ -1,3 +0,0 @@
opennebula/remotes var/lib/one/
opennebula/sudoers.d etc/
opennebula/install.sh var/lib/one/remotes/datastore/vitastor/

View File

@ -1,7 +0,0 @@
#!/bin/sh
set -e
if [ "$1" = "configure" ]; then
/var/lib/one/remotes/datastore/vitastor/install.sh
fi

View File

@ -1,4 +0,0 @@
interest /var/lib/one/remotes/datastore/downloader.sh
interest /etc/one/oned.conf
interest /etc/one/vmm_exec/vmm_execrc
interest /etc/apparmor.d/local/abstractions/libvirt-qemu

View File

@ -1,6 +1,6 @@
usr/bin/vitastor-osd usr/bin/vitastor-osd
usr/bin/vitastor-disk usr/bin/vitastor-disk
usr/bin/vitastor-dump-journal usr/bin/vitastor-dump-journal
mon/scripts/vitastor-osd@.service /lib/systemd/system mon/vitastor-osd@.service /lib/systemd/system
mon/scripts/vitastor.target /lib/systemd/system mon/vitastor.target /lib/systemd/system
mon/scripts/90-vitastor.rules /lib/udev/rules.d mon/90-vitastor.rules /lib/udev/rules.d

View File

@ -1,20 +1,18 @@
# Build Vitastor packages for Debian inside a container # Build Vitastor packages for Debian inside a container
# cd ..; podman build --build-arg DISTRO=debian --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/vitastor.Dockerfile . # cd ..; podman build --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/vitastor.Dockerfile .
ARG DISTRO=debian
ARG REL= ARG REL=
FROM $DISTRO:$REL FROM debian:$REL
ARG DISTRO=debian
ARG REL= ARG REL=
WORKDIR /root WORKDIR /root
RUN set -e -x; \ RUN if [ "$REL" = "buster" -o "$REL" = "bullseye" ]; then \
if [ "$REL" = "buster" ]; then \ echo "deb http://deb.debian.org/debian $REL-backports main" >> /etc/apt/sources.list; \
apt-get update; \ echo >> /etc/apt/preferences; \
apt-get -y install wget; \ echo 'Package: *' >> /etc/apt/preferences; \
wget https://vitastor.io/debian/pubkey.gpg -O /etc/apt/trusted.gpg.d/vitastor.gpg; \ echo "Pin: release a=$REL-backports" >> /etc/apt/preferences; \
echo "deb https://vitastor.io/debian $REL main" >> /etc/apt/sources.list; \ echo 'Pin-Priority: 500' >> /etc/apt/preferences; \
fi; \ fi; \
grep '^deb ' /etc/apt/sources.list | perl -pe 's/^deb/deb-src/' >> /etc/apt/sources.list; \ grep '^deb ' /etc/apt/sources.list | perl -pe 's/^deb/deb-src/' >> /etc/apt/sources.list; \
perl -i -pe 's/Types: deb$/Types: deb deb-src/' /etc/apt/sources.list.d/debian.sources || true; \ perl -i -pe 's/Types: deb$/Types: deb deb-src/' /etc/apt/sources.list.d/debian.sources || true; \
@ -22,9 +20,10 @@ RUN set -e -x; \
echo 'APT::Install-Suggests false;' >> /etc/apt/apt.conf echo 'APT::Install-Suggests false;' >> /etc/apt/apt.conf
RUN apt-get update RUN apt-get update
RUN apt-get -y install fio liburing-dev libgoogle-perftools-dev devscripts libjerasure-dev cmake libibverbs-dev libisal-dev libnl-3-dev libnl-genl-3-dev curl RUN apt-get -y install fio liburing-dev libgoogle-perftools-dev devscripts
RUN apt-get -y build-dep fio RUN apt-get -y build-dep fio
RUN apt-get --download-only source fio RUN apt-get --download-only source fio
RUN apt-get update && apt-get -y install libjerasure-dev cmake libibverbs-dev libisal-dev
ADD . /root/vitastor ADD . /root/vitastor
RUN set -e -x; \ RUN set -e -x; \
@ -36,10 +35,8 @@ RUN set -e -x; \
mkdir -p /root/packages/vitastor-$REL; \ mkdir -p /root/packages/vitastor-$REL; \
rm -rf /root/packages/vitastor-$REL/*; \ rm -rf /root/packages/vitastor-$REL/*; \
cd /root/packages/vitastor-$REL; \ cd /root/packages/vitastor-$REL; \
FULLVER=$(head -n1 /root/vitastor/debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \ cp -r /root/vitastor vitastor-0.9.2; \
VER=${FULLVER%%-*}; \ cd vitastor-0.9.2; \
cp -r /root/vitastor vitastor-$VER; \
cd vitastor-$VER; \
ln -s /root/fio-build/fio-*/ ./fio; \ ln -s /root/fio-build/fio-*/ ./fio; \
FIO=$(head -n1 fio/debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \ FIO=$(head -n1 fio/debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \
ls /usr/include/linux/raw.h || cp ./debian/raw.h /usr/include/linux/raw.h; \ ls /usr/include/linux/raw.h || cp ./debian/raw.h /usr/include/linux/raw.h; \
@ -51,14 +48,10 @@ RUN set -e -x; \
echo fio-headers.patch >> debian/patches/series; \ echo fio-headers.patch >> debian/patches/series; \
rm -rf a b; \ rm -rf a b; \
echo "dep:fio=$FIO" > debian/fio_version; \ echo "dep:fio=$FIO" > debian/fio_version; \
cd /root/packages/vitastor-$REL/vitastor-$VER; \
mkdir mon/node_modules; \
cd mon/node_modules; \
curl -s https://git.yourcmc.ru/vitalif/antietcd/archive/master.tar.gz | tar -zx; \
curl -s https://git.yourcmc.ru/vitalif/tinyraft/archive/master.tar.gz | tar -zx; \
cd /root/packages/vitastor-$REL; \ cd /root/packages/vitastor-$REL; \
tar --sort=name --mtime='2020-01-01' --owner=0 --group=0 --exclude=debian -cJf vitastor_$VER.orig.tar.xz vitastor-$VER; \ tar --sort=name --mtime='2020-01-01' --owner=0 --group=0 --exclude=debian -cJf vitastor_0.9.2.orig.tar.xz vitastor-0.9.2; \
cd vitastor-$VER; \ cd vitastor-0.9.2; \
DEBFULLNAME="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v "$FULLVER""$REL" "Rebuild for $REL"; \ V=$(head -n1 debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \
DEBFULLNAME="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v "$V""$REL" "Rebuild for $REL"; \
DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \ DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \
rm -rf /root/packages/vitastor-$REL/vitastor-*/ rm -rf /root/packages/vitastor-$REL/vitastor-*/

View File

@ -33,7 +33,6 @@ In the future, additional configuration methods may be added:
- [Common](config/common.en.md) - [Common](config/common.en.md)
- [Network](config/network.en.md) - [Network](config/network.en.md)
- [Client](config/client.en.md)
- [Global Disk Layout](config/layout-cluster.en.md) - [Global Disk Layout](config/layout-cluster.en.md)
- [OSD Disk Layout](config/layout-osd.en.md) - [OSD Disk Layout](config/layout-osd.en.md)
- [OSD Runtime Parameters](config/osd.en.md) - [OSD Runtime Parameters](config/osd.en.md)

View File

@ -36,7 +36,6 @@
- [Общие](config/common.ru.md) - [Общие](config/common.ru.md)
- [Сеть](config/network.ru.md) - [Сеть](config/network.ru.md)
- [Клиентский код](config/client.ru.md)
- [Глобальные дисковые параметры](config/layout-cluster.ru.md) - [Глобальные дисковые параметры](config/layout-cluster.ru.md)
- [Дисковые параметры OSD](config/layout-osd.ru.md) - [Дисковые параметры OSD](config/layout-osd.ru.md)
- [Прочие параметры OSD](config/osd.ru.md) - [Прочие параметры OSD](config/osd.ru.md)

View File

@ -1,203 +0,0 @@
[Documentation](../../README.md#documentation) → [Configuration](../config.en.md) → Client Parameters
-----
[Читать на русском](client.ru.md)
# Client Parameters
These parameters apply only to Vitastor clients (QEMU, fio, NBD and so on) and
affect their interaction with the cluster.
- [client_iothread_count](#client_iothread_count)
- [client_retry_interval](#client_retry_interval)
- [client_eio_retry_interval](#client_eio_retry_interval)
- [client_retry_enospc](#client_retry_enospc)
- [client_max_dirty_bytes](#client_max_dirty_bytes)
- [client_max_dirty_ops](#client_max_dirty_ops)
- [client_enable_writeback](#client_enable_writeback)
- [client_max_buffered_bytes](#client_max_buffered_bytes)
- [client_max_buffered_ops](#client_max_buffered_ops)
- [client_max_writeback_iodepth](#client_max_writeback_iodepth)
- [nbd_timeout](#nbd_timeout)
- [nbd_max_devices](#nbd_max_devices)
- [nbd_max_part](#nbd_max_part)
- [osd_nearfull_ratio](#osd_nearfull_ratio)
## client_iothread_count
- Type: integer
- Default: 0
Number of separate threads for handling TCP network I/O at client library
side. Enabling 4 threads usually allows to increase peak performance of each
client from approx. 2-3 to 7-8 GByte/s linear read/write and from approx.
100-150 to 400 thousand iops, but at the same time it increases latency.
Latency increase depends on CPU: with CPU power saving disabled latency
only increases by ~10 us (equivalent to Q=1 iops decrease from 10500 to 9500),
with CPU power saving enabled it may be as high as 500 us (equivalent to Q=1
iops decrease from 2000 to 1000). RDMA isn't affected by this option.
It's recommended to enable client I/O threads if you don't use RDMA and want
to increase peak client performance.
## client_retry_interval
- Type: milliseconds
- Default: 50
- Minimum: 10
- Can be changed online: yes
Retry time for I/O requests failed due to inactive PGs or network
connectivity errors.
## client_eio_retry_interval
- Type: milliseconds
- Default: 1000
- Can be changed online: yes
Retry time for I/O requests failed due to data corruption or unfinished
EC object deletions (has_incomplete PG state). 0 disables such retries
and clients are not blocked and just get EIO error code instead.
## client_retry_enospc
- Type: boolean
- Default: true
- Can be changed online: yes
Retry writes on out of space errors to wait until some space is freed on
OSDs.
## client_max_dirty_bytes
- Type: integer
- Default: 33554432
- Can be changed online: yes
Without [immediate_commit](layout-cluster.en.md#immediate_commit)=all this parameter sets the limit of "dirty"
(not committed by fsync) data allowed by the client before forcing an
additional fsync and committing the data. Also note that the client always
holds a copy of uncommitted data in memory so this setting also affects
RAM usage of clients.
## client_max_dirty_ops
- Type: integer
- Default: 1024
- Can be changed online: yes
Same as client_max_dirty_bytes, but instead of total size, limits the number
of uncommitted write operations.
## client_enable_writeback
- Type: boolean
- Default: false
- Can be changed online: yes
This parameter enables client-side write buffering. This means that write
requests are accumulated in memory for a short time before being sent to
a Vitastor cluster which allows to send them in parallel and increase
performance of some applications. Writes are buffered until client forces
a flush with fsync() or until the amount of buffered writes exceeds the
limit.
Write buffering significantly increases performance of some applications,
for example, CrystalDiskMark under Windows (LOL :-D), but also any other
applications if they do writes in one of two non-optimal ways: either if
they do a lot of small (4 kb or so) sequential writes, or if they do a lot
of small random writes, but without any parallelism or asynchrony, and also
without calling fsync().
With write buffering enabled, you can expect around 22000 T1Q1 random write
iops in QEMU more or less regardless of the quality of your SSDs, and this
number is in fact bound by QEMU itself rather than Vitastor (check it
yourself by adding a "driver=null-co" disk in QEMU). Without write
buffering, the current record is 9900 iops, but the number is usually
even lower with non-ideal hardware, for example, it may be 5000 iops.
Even when this parameter is enabled, write buffering isn't enabled until
the client explicitly allows it, because enabling it without the client
being aware of the fact that his writes may be buffered may lead to data
loss. Because of this, older versions of clients don't support write
buffering at all, newer versions of the QEMU driver allow write buffering
only if it's enabled in disk settings with `-blockdev cache.direct=false`,
and newer versions of FIO only allow write buffering if you don't specify
`-direct=1`. NBD and NFS drivers allow write buffering by default.
You can overcome this restriction too with the `client_writeback_allowed`
parameter, but you shouldn't do that unless you **really** know what you
are doing.
## client_max_buffered_bytes
- Type: integer
- Default: 33554432
- Can be changed online: yes
Maximum total size of buffered writes which triggers write-back when reached.
## client_max_buffered_ops
- Type: integer
- Default: 1024
- Can be changed online: yes
Maximum number of buffered writes which triggers write-back when reached.
Multiple consecutive modified data regions are counted as 1 write here.
## client_max_writeback_iodepth
- Type: integer
- Default: 256
- Can be changed online: yes
Maximum number of parallel writes when flushing buffered data to the server.
## nbd_timeout
- Type: seconds
- Default: 300
Timeout for I/O operations for [NBD](../usage/nbd.en.md). If an operation
executes for longer than this timeout, including when your cluster is just
temporarily down for more than timeout, the NBD device will detach by itself
(and possibly break the mounted file system).
You can set timeout to 0 to never detach, but in that case you won't be
able to remove the kernel device at all if the NBD process dies - you'll have
to reboot the host.
## nbd_max_devices
- Type: integer
- Default: 64
Maximum number of NBD devices in the system. This value is passed as
`nbds_max` parameter for the nbd kernel module when vitastor-nbd autoloads it.
## nbd_max_part
- Type: integer
- Default: 3
Maximum number of partitions per NBD device. This value is passed as
`max_part` parameter for the nbd kernel module when vitastor-nbd autoloads it.
Note that (nbds_max)*(1+max_part) usually can't exceed 256.
## osd_nearfull_ratio
- Type: number
- Default: 0.95
- Can be changed online: yes
Ratio of used space on OSD to treat it as "almost full" in vitastor-cli status output.
Remember that some client writes may hang or complete with an error if even
just one OSD becomes 100 % full!
However, unlike in Ceph, 100 % full Vitastor OSDs don't crash (in Ceph they're
unable to start at all), so you'll be able to recover from "out of space" errors
without destroying and recreating OSDs.

View File

@ -1,207 +0,0 @@
[Документация](../../README-ru.md#документация) → [Конфигурация](../config.ru.md) → Параметры клиентского кода
-----
[Read in English](client.en.md)
# Параметры клиентского кода
Данные параметры применяются только к клиентам Vitastor (QEMU, fio, NBD и т.п.) и
затрагивают логику их работы с кластером.
- [client_iothread_count](#client_iothread_count)
- [client_retry_interval](#client_retry_interval)
- [client_eio_retry_interval](#client_eio_retry_interval)
- [client_retry_enospc](#client_retry_enospc)
- [client_max_dirty_bytes](#client_max_dirty_bytes)
- [client_max_dirty_ops](#client_max_dirty_ops)
- [client_enable_writeback](#client_enable_writeback)
- [client_max_buffered_bytes](#client_max_buffered_bytes)
- [client_max_buffered_ops](#client_max_buffered_ops)
- [client_max_writeback_iodepth](#client_max_writeback_iodepth)
- [nbd_timeout](#nbd_timeout)
- [nbd_max_devices](#nbd_max_devices)
- [nbd_max_part](#nbd_max_part)
- [osd_nearfull_ratio](#osd_nearfull_ratio)
## client_iothread_count
- Тип: целое число
- Значение по умолчанию: 0
Число отдельных потоков для обработки ввода-вывода через TCP сеть на стороне
клиентской библиотеки. Включение 4 потоков обычно позволяет поднять пиковую
производительность каждого клиента примерно с 2-3 до 7-8 Гбайт/с линейного
чтения/записи и примерно с 100-150 до 400 тысяч операций ввода-вывода в
секунду, но ухудшает задержку. Увеличение задержки зависит от процессора:
при отключённом энергосбережении CPU это всего ~10 микросекунд (равносильно
падению iops с Q=1 с 10500 до 9500), а при включённом это может быть
и 500 микросекунд (равносильно падению iops с Q=1 с 2000 до 1000). На работу
RDMA данная опция не влияет.
Рекомендуется включать клиентские потоки ввода-вывода, если вы не используете
RDMA и хотите повысить пиковую производительность клиентов.
## client_retry_interval
- Тип: миллисекунды
- Значение по умолчанию: 50
- Минимальное значение: 10
- Можно менять на лету: да
Время повтора запросов ввода-вывода, неудачных из-за неактивных PG или
ошибок сети.
## client_eio_retry_interval
- Тип: миллисекунды
- Значение по умолчанию: 1000
- Можно менять на лету: да
Время повтора запросов ввода-вывода, неудачных из-за повреждения данных
или незавершённых удалений EC-объектов (состояния PG has_incomplete).
0 отключает повторы таких запросов и клиенты не блокируются, а вместо
этого просто получают код ошибки EIO.
## client_retry_enospc
- Тип: булево (да/нет)
- Значение по умолчанию: true
- Можно менять на лету: да
Повторять запросы записи, завершившиеся с ошибками нехватки места, т.е.
ожидать, пока на OSD не освободится место.
## client_max_dirty_bytes
- Тип: целое число
- Значение по умолчанию: 33554432
- Можно менять на лету: да
При работе без [immediate_commit](layout-cluster.ru.md#immediate_commit)=all - это лимит объёма "грязных" (не
зафиксированных fsync-ом) данных, при достижении которого клиент будет
принудительно вызывать fsync и фиксировать данные. Также стоит иметь в виду,
что в этом случае до момента fsync клиент хранит копию незафиксированных
данных в памяти, то есть, настройка влияет на потребление памяти клиентами.
## client_max_dirty_ops
- Тип: целое число
- Значение по умолчанию: 1024
- Можно менять на лету: да
Аналогично client_max_dirty_bytes, но ограничивает количество
незафиксированных операций записи вместо их общего объёма.
## client_enable_writeback
- Тип: булево (да/нет)
- Значение по умолчанию: false
- Можно менять на лету: да
Данный параметр разрешает включать буферизацию записи в памяти. Буферизация
означает, что операции записи отправляются на кластер Vitastor не сразу, а
могут небольшое время накапливаться в памяти и сбрасываться сразу пакетами,
до тех пор, пока либо не будет превышен лимит неотправленных записей, либо
пока клиент не вызовет fsync.
Буферизация значительно повышает производительность некоторых приложений,
например, CrystalDiskMark в Windows (ха-ха :-D), но также и любых других,
которые пишут на диск неоптимально: либо последовательно, но мелкими блоками
(например, по 4 кб), либо случайно, но без параллелизма и без fsync - то
есть, например, отправляя 128 операций записи в разные места диска, но не
все сразу с помощью асинхронного I/O, а по одной.
В QEMU с буферизацией записи можно ожидать показателя примерно 22000
операций случайной записи в секунду в 1 поток и с глубиной очереди 1 (T1Q1)
без fsync, почти вне зависимости от того, насколько хороши ваши диски - эта
цифра упирается в сам QEMU. Без буферизации рекорд пока что - 9900 операций
в секунду, но на железе похуже может быть и поменьше, например, 5000 операций
в секунду.
При этом, даже если данный параметр включён, буферизация не включается, если
явно не разрешена клиентом, т.к. если клиент не знает, что запросы записи
буферизуются, это может приводить к потере данных. Поэтому в старых версиях
клиентских драйверов буферизация записи не включается вообще, в новых
версиях QEMU-драйвера включается, только если разрешена опцией диска
`-blockdev cache.direct=false`, а в fio - только если нет опции `-direct=1`.
В NBD и NFS драйверах буферизация записи разрешена по умолчанию.
Можно обойти и это ограничение с помощью параметра `client_writeback_allowed`,
но делать так не надо, если только вы не уверены в том, что делаете, на все
100%. :-)
## client_max_buffered_bytes
- Тип: целое число
- Значение по умолчанию: 33554432
- Можно менять на лету: да
Максимальный общий размер буферизованных записей, при достижении которого
начинается процесс сброса данных на сервер.
## client_max_buffered_ops
- Тип: целое число
- Значение по умолчанию: 1024
- Можно менять на лету: да
Максимальное количество буферизованных записей, при достижении которого
начинается процесс сброса данных на сервер. При этом несколько
последовательных изменённых областей здесь считаются 1 записью.
## client_max_writeback_iodepth
- Тип: целое число
- Значение по умолчанию: 256
- Можно менять на лету: да
Максимальное число параллельных операций записи при сбросе буферов на сервер.
## nbd_timeout
- Тип: секунды
- Значение по умолчанию: 300
Таймаут для операций чтения/записи через [NBD](../usage/nbd.ru.md). Если
операция выполняется дольше таймаута, включая временную недоступность
кластера на время, большее таймаута, NBD-устройство отключится само собой
(и, возможно, сломает примонтированную ФС).
Вы можете установить таймаут в 0, чтобы никогда не отключать устройство по
таймауту, но в этом случае вы вообще не сможете удалить устройство, если
процесс NBD умрёт - вам придётся перезагружать сервер.
## nbd_max_devices
- Тип: целое число
- Значение по умолчанию: 64
Максимальное число NBD-устройств в системе. Данное значение передаётся
модулю ядра nbd как параметр `nbds_max`, когда его загружает vitastor-nbd.
## nbd_max_part
- Тип: целое число
- Значение по умолчанию: 3
Максимальное число разделов на одном NBD-устройстве. Данное значение передаётся
модулю ядра nbd как параметр `max_part`, когда его загружает vitastor-nbd.
Имейте в виду, что (nbds_max)*(1+max_part) обычно не может превышать 256.
## osd_nearfull_ratio
- Тип: число
- Значение по умолчанию: 0.95
- Можно менять на лету: да
Доля занятого места на OSD, начиная с которой он считается "почти заполненным" в
выводе vitastor-cli status.
Помните, что часть клиентских запросов может зависнуть или завершиться с ошибкой,
если на 100 % заполнится хотя бы 1 OSD!
Однако, в отличие от Ceph, заполненные на 100 % OSD Vitastor не падают (в Ceph
заполненные на 100% OSD вообще не могут стартовать), так что вы сможете
восстановить работу кластера после ошибок отсутствия свободного места
без уничтожения и пересоздания OSD.

View File

@ -33,13 +33,12 @@ Size of objects (data blocks) into which all physical and virtual drives
in Vitastor, affects memory usage, write amplification and I/O load in Vitastor, affects memory usage, write amplification and I/O load
distribution effectiveness. distribution effectiveness.
Recommended default block size is 128 KB for SSD and 1 MB for HDD. In fact, Recommended default block size is 128 KB for SSD and 4 MB for HDD. In fact,
it's possible to use 1 MB for SSD too - it will lower memory usage, but it's possible to use 4 MB for SSD too - it will lower memory usage, but
may increase average WA and reduce linear performance. may increase average WA and reduce linear performance.
OSD memory usage is roughly (SIZE / BLOCK * 68 bytes) which is roughly OSD memory usage is roughly (SIZE / BLOCK * 68 bytes) which is roughly
544 MB per 1 TB of used disk space with the default 128 KB block size. 544 MB per 1 TB of used disk space with the default 128 KB block size.
With 1 MB it's 8 times lower.
## bitmap_granularity ## bitmap_granularity
@ -56,24 +55,14 @@ Can't be smaller than the OSD data device sector.
## immediate_commit ## immediate_commit
- Type: string - Type: string
- Default: all - Default: false
One of "none", "all" or "small". Global value, may be overriden [at pool level](pool.en.md#immediate_commit). Another parameter which is really important for performance.
This parameter is also really important for performance.
TLDR: default "all" is optimal for server-grade SSDs with supercapacitor-based
power loss protection (nonvolatile write-through cache) and also for most HDDs.
"none" or "small" should be only selected if you use desktop SSDs without
capacitors or drives with slow write-back cache that can't be disabled. Check
immediate_commit of your OSDs in [ls-osd](../usage/cli.en.md#ls-osd).
Detailed explanation:
Desktop SSDs are very fast (100000+ iops) for simple random writes Desktop SSDs are very fast (100000+ iops) for simple random writes
without cache flush. However, they are really slow (only around 1000 iops) without cache flush. However, they are really slow (only around 1000 iops)
if you try to fsync() each write, that is, if you want to guarantee that if you try to fsync() each write, that is, when you want to guarantee that
each change gets actually persisted to the physical media. each change gets immediately persisted to the physical media.
Server-grade SSDs with "Advanced/Enhanced Power Loss Protection" or with Server-grade SSDs with "Advanced/Enhanced Power Loss Protection" or with
"Supercapacitor-based Power Loss Protection", on the other hand, are equally "Supercapacitor-based Power Loss Protection", on the other hand, are equally
@ -85,8 +74,8 @@ really slow when used with desktop SSDs. Vitastor, however, can also
efficiently utilize desktop SSDs by postponing fsync until the client calls efficiently utilize desktop SSDs by postponing fsync until the client calls
it explicitly. it explicitly.
This is what this parameter regulates. When it's set to "all" Vitastor This is what this parameter regulates. When it's set to "all" the whole
cluster commits each change to disks immediately and clients just Vitastor cluster commits each change to disks immediately and clients just
ignore fsyncs because they know for sure that they're unneeded. This reduces ignore fsyncs because they know for sure that they're unneeded. This reduces
the amount of network roundtrips performed by clients and improves the amount of network roundtrips performed by clients and improves
performance. So it's always better to use server grade SSDs with performance. So it's always better to use server grade SSDs with
@ -106,8 +95,11 @@ SSD cache or "media-cache" - for example, a lot of Seagate EXOS drives have
it (they have internal SSD cache even though it's not stated in datasheets). it (they have internal SSD cache even though it's not stated in datasheets).
Setting this parameter to "all" or "small" in OSD parameters requires enabling Setting this parameter to "all" or "small" in OSD parameters requires enabling
[disable_journal_fsync](layout-osd.en.md#disable_journal_fsync) and disable_journal_fsync and disable_meta_fsync, setting it to "all" also requires
[disable_meta_fsync](layout-osd.en.md#disable_meta_fsync), setting it to enabling disable_data_fsync.
"all" also requires enabling [disable_data_fsync](layout-osd.en.md#disable_data_fsync).
vitastor-disk tried to do that by default, first checking/disabling drive cache. TLDR: For optimal performance, set immediate_commit to "all" if you only use
If it can't disable drive cache, OSD get initialized with "none". SSDs with supercapacitor-based power loss protection (nonvolatile
write-through cache) for both data and journals in the whole Vitastor
cluster. Set it to "small" if you only use such SSDs for journals. Leave
empty if your drives have write-back cache.

View File

@ -33,14 +33,14 @@ OSD) могут сосуществовать в одном кластере Vita
настроек, влияет на потребление памяти, объём избыточной записи (write настроек, влияет на потребление памяти, объём избыточной записи (write
amplification) и эффективность распределения нагрузки по OSD. amplification) и эффективность распределения нагрузки по OSD.
Рекомендуемые по умолчанию размеры блока - 128 килобайт для SSD и 1 мегабайт Рекомендуемые по умолчанию размеры блока - 128 килобайт для SSD и 4
для HDD. В принципе, для SSD можно тоже использовать блок размером 1 мегабайт, мегабайта для HDD. В принципе, для SSD можно тоже использовать 4 мегабайта,
это понизит использование памяти, но ухудшит распределение нагрузки и в это понизит использование памяти, но ухудшит распределение нагрузки и в
среднем увеличит WA. среднем увеличит WA.
Потребление памяти OSD составляет примерно (РАЗМЕР / БЛОК * 68 байт), Потребление памяти OSD составляет примерно (РАЗМЕР / БЛОК * 68 байт),
т.е. примерно 544 МБ памяти на 1 ТБ занятого места на диске при т.е. примерно 544 МБ памяти на 1 ТБ занятого места на диске при
стандартном 128 КБ блоке. При 1 МБ блоке памяти нужно в 8 раз меньше. стандартном 128 КБ блоке.
## bitmap_granularity ## bitmap_granularity
@ -57,18 +57,9 @@ amplification) и эффективность распределения нагр
## immediate_commit ## immediate_commit
- Тип: строка - Тип: строка
- Значение по умолчанию: all - Значение по умолчанию: false
Одно из значений "none", "small" или "all". Глобальное значение, может быть Ещё один важный для производительности параметр.
переопределено [на уровне пула](pool.ru.md#immediate_commit).
Данный параметр тоже важен для производительности.
Вкратце: значение по умолчанию "all" оптимально для всех серверных SSD с
суперконденсаторами и также для большинства HDD. "none" и "small" имеет смысл
устанавливать только при использовании SSD настольного класса без
суперконденсаторов или дисков с медленным неотключаемым кэшем записи.
Проверьте настройку immediate_commit своих OSD в выводе команды [ls-osd](../usage/cli.ru.md#ls-osd).
Модели SSD для настольных компьютеров очень быстрые (100000+ операций в Модели SSD для настольных компьютеров очень быстрые (100000+ операций в
секунду) при простой случайной записи без сбросов кэша. Однако они очень секунду) при простой случайной записи без сбросов кэша. Однако они очень
@ -89,7 +80,7 @@ Power Loss Protection" - одинаково быстрые и со сбросо
эффективно утилизировать настольные SSD. эффективно утилизировать настольные SSD.
Данный параметр влияет как раз на это. Когда он установлен в значение "all", Данный параметр влияет как раз на это. Когда он установлен в значение "all",
кластер Vitastor мгновенно фиксирует каждое изменение на физические весь кластер Vitastor мгновенно фиксирует каждое изменение на физические
носители и клиенты могут просто игнорировать запросы fsync, т.к. они точно носители и клиенты могут просто игнорировать запросы fsync, т.к. они точно
знают, что fsync-и не нужны. Это уменьшает число необходимых обращений к OSD знают, что fsync-и не нужны. Это уменьшает число необходимых обращений к OSD
по сети и улучшает производительность. Поэтому даже с Vitastor лучше всегда по сети и улучшает производительность. Поэтому даже с Vitastor лучше всегда
@ -112,6 +103,12 @@ HDD-дисках с внутренним SSD или "медиа" кэшем - н
указано в спецификациях). указано в спецификациях).
Указание "all" или "small" в настройках / командной строке OSD требует Указание "all" или "small" в настройках / командной строке OSD требует
включения [disable_journal_fsync](layout-osd.ru.md#disable_journal_fsync) и включения disable_journal_fsync и disable_meta_fsync, значение "all" также
[disable_meta_fsync](layout-osd.ru.md#disable_meta_fsync), значение "all" требует включения disable_data_fsync.
также требует включения [disable_data_fsync](layout-osd.ru.md#disable_data_fsync).
Итого, вкратце: для оптимальной производительности установите
immediate_commit в значение "all", если вы используете в кластере только SSD
с суперконденсаторами и для данных, и для журналов. Если вы используете
такие SSD для всех журналов, но не для данных - можете установить параметр
в "small". Если и какие-то из дисков журналов имеют волатильный кэш записи -
оставьте параметр пустым.

View File

@ -24,8 +24,6 @@ initialization and can't be changed after it without losing data.
- [disable_journal_fsync](#disable_journal_fsync) - [disable_journal_fsync](#disable_journal_fsync)
- [disable_device_lock](#disable_device_lock) - [disable_device_lock](#disable_device_lock)
- [disk_alignment](#disk_alignment) - [disk_alignment](#disk_alignment)
- [data_csum_type](#data_csum_type)
- [csum_block_size](#csum_block_size)
## data_device ## data_device
@ -118,13 +116,12 @@ Physical block size of the journal device. Must be a multiple of
- Type: boolean - Type: boolean
- Default: false - Default: false
Do not issue fsyncs to the data device, i.e. do not force it to flush cache. Do not issue fsyncs to the data device, i.e. do not flush its cache.
Safe ONLY if your data device has write-through cache or if write-back Safe ONLY if your data device has write-through cache. If you disable
cache is disabled. If you disable drive cache manually with `hdparm` or the cache yourself using `hdparm` or `scsi_disk/cache_type` then make sure
writing to `/sys/.../scsi_disk/cache_type` then make sure that you do it that the cache disable command is run every time before starting Vitastor
every time before starting Vitastor OSD (vitastor-disk does it automatically). OSD, for example, in the systemd unit. See also `immediate_commit` option
See also [immediate_commit](layout-cluster.en.md#immediate_commit) for the instructions to disable cache and how to benefit from it.
for information about how to benefit from disabled cache.
## disable_meta_fsync ## disable_meta_fsync
@ -172,47 +169,8 @@ size, it actually has to write the whole 4 KB sector.
Because of this it can actually be beneficial to use SSDs which work well Because of this it can actually be beneficial to use SSDs which work well
with 512 byte sectors and use 512 byte disk_alignment, journal_block_size with 512 byte sectors and use 512 byte disk_alignment, journal_block_size
and meta_block_size. But at the moment, no such SSDs are known... and meta_block_size. But the only SSD that may fit into this category is
Intel Optane (probably, not tested yet).
Clients don't need to be aware of disk_alignment, so it's not required to Clients don't need to be aware of disk_alignment, so it's not required to
put a modified value into etcd key /vitastor/config/global. put a modified value into etcd key /vitastor/config/global.
## data_csum_type
- Type: string
- Default: none
Data checksum type to use. May be "crc32c" or "none". Set to "crc32c" to
enable data checksums.
## csum_block_size
- Type: integer
- Default: 4096
Checksum calculation block size.
Must be equal or a multiple of [bitmap_granularity](layout-cluster.en.md#bitmap_granularity)
(which is usually 4 KB).
Checksums increase metadata size by 4 bytes per each csum_block_size of data.
Checksums are always a tradeoff:
1. You either sacrifice +1 GB RAM per 1 TB of data
2. Or you raise csum_block_size, for example, to 32k and sacrifice
50% random write iops due to checksum read-modify-write
3. Or you turn off [inmemory_metadata](osd.en.md#inmemory_metadata) and
sacrifice 50% random read iops due to checksum reads
All-flash clusters usually have enough RAM to use default csum_block_size,
which uses 1 GB RAM per 1 TB of data. HDD clusters usually don't.
Thus, recommended setups are:
1. All-flash, 1 GB RAM per 1 TB data: default (csum_block_size=4k)
2. All-flash, less RAM: csum_block_size=4k + inmemory_metadata=false
3. Hybrid HDD+SSD: csum_block_size=4k + inmemory_metadata=false
4. HDD-only, faster random read: csum_block_size=32k
5. HDD-only, faster random write: csum_block_size=4k +
inmemory_metadata=false + meta_io=cached
See also [meta_io](osd.en.md#meta_io).

View File

@ -25,8 +25,6 @@
- [disable_journal_fsync](#disable_journal_fsync) - [disable_journal_fsync](#disable_journal_fsync)
- [disable_device_lock](#disable_device_lock) - [disable_device_lock](#disable_device_lock)
- [disk_alignment](#disk_alignment) - [disk_alignment](#disk_alignment)
- [data_csum_type](#data_csum_type)
- [csum_block_size](#csum_block_size)
## data_device ## data_device
@ -122,14 +120,13 @@ SSD-диске, иначе производительность пострада
- Тип: булево (да/нет) - Тип: булево (да/нет)
- Значение по умолчанию: false - Значение по умолчанию: false
Не отправлять fsync-и устройству данных, т.е. не заставлять его сбрасывать кэш. Не отправлять fsync-и устройству данных, т.е. не сбрасывать его кэш.
Безопасно, ТОЛЬКО если ваше устройство данных имеет кэш со сквозной Безопасно, ТОЛЬКО если ваше устройство данных имеет кэш со сквозной
записью (write-through) или если кэш с отложенной записью (write-back) отключён. записью (write-through). Если вы отключаете кэш через `hdparm` или
Если вы отключаете кэш вручную через `hdparm` или запись в `/sys/.../scsi_disk/cache_type`, `scsi_disk/cache_type`, то удостоверьтесь, что команда отключения кэша
то удостоверьтесь, что вы делаете это каждый раз перед запуском Vitastor OSD выполняется перед каждым запуском Vitastor OSD, например, в systemd unit-е.
(vitastor-disk делает это автоматически). Смотрите также опцию Смотрите также опцию `immediate_commit` для инструкций по отключению кэша
[immediate_commit](layout-cluster.ru.md#immediate_commit) для информации о том, и о том, как из этого извлечь выгоду.
как извлечь выгоду из отключённого кэша.
## disable_meta_fsync ## disable_meta_fsync
@ -180,52 +177,9 @@ SSD и HDD диски используют 4 КБ физические сект
Поэтому, на самом деле, может быть выгодно найти SSD, хорошо работающие с Поэтому, на самом деле, может быть выгодно найти SSD, хорошо работающие с
меньшими, 512-байтными, блоками и использовать 512-байтные disk_alignment, меньшими, 512-байтными, блоками и использовать 512-байтные disk_alignment,
journal_block_size и meta_block_size. Однако на данный момент такие SSD journal_block_size и meta_block_size. Однако единственные SSD, которые
не известны... теоретически могут попасть в эту категорию - это Intel Optane (но и это
пока не проверялось автором).
Клиентам не обязательно знать про disk_alignment, так что помещать значение Клиентам не обязательно знать про disk_alignment, так что помещать значение
этого параметра в etcd в /vitastor/config/global не нужно. этого параметра в etcd в /vitastor/config/global не нужно.
## data_csum_type
- Тип: строка
- Значение по умолчанию: none
Тип используемых OSD контрольных сумм данных. Может быть "crc32c" или "none".
Установите в "crc32c", чтобы включить расчёт и проверку контрольных сумм данных.
Следует понимать, что контрольные суммы в зависимости от размера блока их
расчёта либо увеличивают потребление памяти, либо снижают производительность.
Подробнее смотрите в описании параметра [csum_block_size](#csum_block_size).
## csum_block_size
- Тип: целое число
- Значение по умолчанию: 4096
Размер блока расчёта контрольных сумм.
Должен быть равен или кратен [bitmap_granularity](layout-cluster.ru.md#bitmap_granularity)
(который обычно равен 4 КБ).
Контрольные суммы увеличивают размер метаданных на 4 байта на каждые
csum_block_size данных.
Контрольные суммы - это всегда компромисс:
1. Вы либо жертвуете потреблением +1 ГБ памяти на 1 ТБ дискового пространства
2. Либо вы повышаете csum_block_size до, скажем, 32k и жертвуете 50%
скорости случайной записи из-за цикла чтения-изменения-записи для расчёта
новых контрольных сумм
3. Либо вы отключаете [inmemory_metadata](osd.ru.md#inmemory_metadata) и
жертвуете 50% скорости случайного чтения из-за чтения контрольных сумм
с диска
Таким образом, рекомендуются следующие варианты настроек:
1. All-flash, 1 ГБ памяти на 1 ТБ данных: по умолчанию (csum_block_size=4k)
2. All-flash, меньше памяти: csum_block_size=4k + inmemory_metadata=false
3. Гибридные HDD+SSD: csum_block_size=4k + inmemory_metadata=false
4. Только HDD, быстрее случайное чтение: csum_block_size=32k
5. Только HDD, быстрее случайная запись: csum_block_size=4k +
inmemory_metadata=false + meta_io=cached
Смотрите также [meta_io](osd.ru.md#meta_io).

View File

@ -8,14 +8,6 @@
These parameters only apply to Monitors. These parameters only apply to Monitors.
- [use_antietcd](#use_antietcd)
- [enable_prometheus](#enable_prometheus)
- [mon_http_port](#mon_http_port)
- [mon_http_ip](#mon_http_ip)
- [mon_https_cert](#mon_https_cert)
- [mon_https_key](#mon_https_key)
- [mon_https_client_auth](#mon_https_client_auth)
- [mon_https_ca](#mon_https_ca)
- [etcd_mon_ttl](#etcd_mon_ttl) - [etcd_mon_ttl](#etcd_mon_ttl)
- [etcd_mon_timeout](#etcd_mon_timeout) - [etcd_mon_timeout](#etcd_mon_timeout)
- [etcd_mon_retries](#etcd_mon_retries) - [etcd_mon_retries](#etcd_mon_retries)
@ -23,94 +15,12 @@ These parameters only apply to Monitors.
- [mon_stats_timeout](#mon_stats_timeout) - [mon_stats_timeout](#mon_stats_timeout)
- [osd_out_time](#osd_out_time) - [osd_out_time](#osd_out_time)
- [placement_levels](#placement_levels) - [placement_levels](#placement_levels)
- [use_old_pg_combinator](#use_old_pg_combinator)
## use_antietcd
- Type: boolean
- Default: false
Enable experimental built-in etcd replacement (clustered key-value database):
[antietcd](https://git.yourcmc.ru/vitalif/antietcd/).
When set to true, monitor runs internal antietcd automatically if it finds
a network interface with an IP address matching one of addresses in the
`etcd_address` configuration option (in `/etc/vitastor/vitastor.conf` or in
the monitor command line). If there are multiple matching addresses, it also
checks `antietcd_port` and antietcd is started for address with matching port.
By default, antietcd accepts connection on the selected IP address, but it
can also be overridden manually in the `antietcd_ip` option.
When antietcd is started, monitor stores cluster metadata itself and exposes
a etcd-compatible REST API. On disk, these metadata are stored in
`/var/lib/vitastor/mon_2379.json.gz` (can be overridden in antietcd_data_file
or antietcd_data_dir options). All other antietcd parameters
(see [here](https://git.yourcmc.ru/vitalif/antietcd/)) except node_id,
cluster, cluster_key, persist_filter, stale_read can also be set in
Vitastor configuration with `antietcd_` prefix.
You can dump/load data to or from antietcd using Antietcd `anticli` tool:
```
npm exec anticli -e http://etcd:2379/v3 get --prefix '' --no-temp > dump.json
npm exec anticli -e http://antietcd:2379/v3 load < dump.json
```
## enable_prometheus
- Type: boolean
- Default: true
Enable built-in Prometheus metrics exporter at mon_http_port (8060 by default).
Note that only the active (master) monitor exposes metrics, others return
HTTP 503. So you should add all monitor URLs to your Prometheus job configuration.
Grafana dashboard suitable for this exporter is here: [Vitastor-Grafana-6+.json](../../mon/scripts/Vitastor-Grafana-6+.json).
## mon_http_port
- Type: integer
- Default: 8060
HTTP port for monitors to listen on (including metrics exporter)
## mon_http_ip
- Type: string
IP address for monitors to listen on (all addresses by default)
## mon_https_cert
- Type: string
Path to PEM SSL certificate file for monitor to listen using HTTPS
## mon_https_key
- Type: string
Path to PEM SSL private key file for monitor to listen using HTTPS
## mon_https_client_auth
- Type: boolean
- Default: false
Enable HTTPS client certificate-based authorization for monitor connections
## mon_https_ca
- Type: string
Path to CA certificate for client HTTPS authorization
## etcd_mon_ttl ## etcd_mon_ttl
- Type: seconds - Type: seconds
- Default: 1 - Default: 30
- Minimum: 5 - Minimum: 10
Monitor etcd lease refresh interval in seconds Monitor etcd lease refresh interval in seconds
@ -167,11 +77,3 @@ values. Smaller priority means higher level in tree. For example,
levels are always predefined and can't be removed. If one of them is not levels are always predefined and can't be removed. If one of them is not
present in the configuration, then it is defined with the default priority present in the configuration, then it is defined with the default priority
(100 for "host", 101 for "osd"). (100 for "host", 101 for "osd").
## use_old_pg_combinator
- Type: boolean
- Default: false
Use the old PG combination generator which doesn't support [level_placement](pool.en.md#level_placement)
and [raw_placement](pool.en.md#raw_placement) for pools which don't use this features.

View File

@ -8,14 +8,6 @@
Данные параметры используются только мониторами Vitastor. Данные параметры используются только мониторами Vitastor.
- [use_antietcd](#use_antietcd)
- [enable_prometheus](#enable_prometheus)
- [mon_http_port](#mon_http_port)
- [mon_http_ip](#mon_http_ip)
- [mon_https_cert](#mon_https_cert)
- [mon_https_key](#mon_https_key)
- [mon_https_client_auth](#mon_https_client_auth)
- [mon_https_ca](#mon_https_ca)
- [etcd_mon_ttl](#etcd_mon_ttl) - [etcd_mon_ttl](#etcd_mon_ttl)
- [etcd_mon_timeout](#etcd_mon_timeout) - [etcd_mon_timeout](#etcd_mon_timeout)
- [etcd_mon_retries](#etcd_mon_retries) - [etcd_mon_retries](#etcd_mon_retries)
@ -23,96 +15,12 @@
- [mon_stats_timeout](#mon_stats_timeout) - [mon_stats_timeout](#mon_stats_timeout)
- [osd_out_time](#osd_out_time) - [osd_out_time](#osd_out_time)
- [placement_levels](#placement_levels) - [placement_levels](#placement_levels)
- [use_old_pg_combinator](#use_old_pg_combinator)
## use_antietcd
- Тип: булево (да/нет)
- Значение по умолчанию: false
Включить экспериментальный встроенный заменитель etcd (кластерную БД ключ-значение):
[antietcd](https://git.yourcmc.ru/vitalif/antietcd/).
Если параметр установлен в true, монитор запускает antietcd автоматически,
если обнаруживает сетевой интерфейс с одним из адресов, указанных в опции
конфигурации `etcd_address``/etc/vitastor/vitastor.conf` или в опциях
командной строки монитора). Если таких адресов несколько, также проверяется
опция `antietcd_port` и antietcd запускается для адреса с соответствующим
портом. По умолчанию antietcd принимает подключения по выбранному совпадающему
IP, но его также можно определить вручную опцией `antietcd_ip`.
При запуске antietcd монитор сам хранит центральные метаданные кластера и
выставляет etcd-совместимое REST API. На диске эти метаданные хранятся в файле
`/var/lib/vitastor/mon_2379.json.gz` (можно переопределить параметрами
antietcd_data_file или antietcd_data_dir). Все остальные параметры antietcd
(смотрите [по ссылке](https://git.yourcmc.ru/vitalif/antietcd/)), за исключением
node_id, cluster, cluster_key, persist_filter, stale_read также можно задавать
в конфигурации Vitastor с префиксом `antietcd_`.
Вы можете выгружать/загружать данные в или из antietcd с помощью его инструмента
`anticli`:
```
npm exec anticli -e http://etcd:2379/v3 get --prefix '' --no-temp > dump.json
npm exec anticli -e http://antietcd:2379/v3 load < dump.json
```
## enable_prometheus
- Тип: булево (да/нет)
- Значение по умолчанию: true
Включить встроенный Prometheus-экспортер метрик на порту mon_http_port (по умолчанию 8060).
Обратите внимание, что метрики выставляет только активный (главный) монитор, остальные
возвращают статус HTTP 503, поэтому вам следует добавлять адреса всех мониторов
в задание по сбору метрик Prometheus.
Дашборд для Grafana, подходящий для этого экспортера: [Vitastor-Grafana-6+.json](../../mon/scripts/Vitastor-Grafana-6+.json).
## mon_http_port
- Тип: целое число
- Значение по умолчанию: 8060
Порт, на котором мониторы принимают HTTP-соединения (в том числе для отдачи метрик)
## mon_http_ip
- Тип: строка
IP-адрес, на котором мониторы принимают HTTP-соединения (по умолчанию все адреса)
## mon_https_cert
- Тип: строка
Путь к PEM-файлу SSL-сертификата для монитора, чтобы принимать соединения через HTTPS
## mon_https_key
- Тип: строка
Путь к PEM-файлу секретного SSL-ключа для монитора, чтобы принимать соединения через HTTPS
## mon_https_client_auth
- Тип: булево (да/нет)
- Значение по умолчанию: false
Включить в HTTPS-сервере монитора авторизацию по клиентским сертификатам
## mon_https_ca
- Тип: строка
Путь к удостоверяющему сертификату для авторизации клиентских HTTPS соединений
## etcd_mon_ttl ## etcd_mon_ttl
- Тип: секунды - Тип: секунды
- Значение по умолчанию: 1 - Значение по умолчанию: 30
- Минимальное значение: 5 - Минимальное значение: 10
Интервал обновления etcd резервации (lease) монитором Интервал обновления etcd резервации (lease) монитором
@ -170,11 +78,3 @@ OSD перед обновлением агрегированной статис
"host" и "osd" являются предопределёнными и не могут быть удалены. Если "host" и "osd" являются предопределёнными и не могут быть удалены. Если
один из них отсутствует в конфигурации, он доопределяется с приоритетом по один из них отсутствует в конфигурации, он доопределяется с приоритетом по
умолчанию (100 для уровня "host", 101 для "osd"). умолчанию (100 для уровня "host", 101 для "osd").
## use_old_pg_combinator
- Тип: булево (да/нет)
- Значение по умолчанию: false
Использовать старый генератор комбинаций PG, не поддерживающий [level_placement](pool.ru.md#level_placement)
и [raw_placement](pool.ru.md#raw_placement) для пулов, которые не используют данные функции.

View File

@ -20,16 +20,17 @@ between clients, OSDs and etcd.
- [rdma_max_msg](#rdma_max_msg) - [rdma_max_msg](#rdma_max_msg)
- [rdma_max_recv](#rdma_max_recv) - [rdma_max_recv](#rdma_max_recv)
- [rdma_max_send](#rdma_max_send) - [rdma_max_send](#rdma_max_send)
- [rdma_odp](#rdma_odp)
- [peer_connect_interval](#peer_connect_interval) - [peer_connect_interval](#peer_connect_interval)
- [peer_connect_timeout](#peer_connect_timeout) - [peer_connect_timeout](#peer_connect_timeout)
- [osd_idle_timeout](#osd_idle_timeout) - [osd_idle_timeout](#osd_idle_timeout)
- [osd_ping_timeout](#osd_ping_timeout) - [osd_ping_timeout](#osd_ping_timeout)
- [up_wait_retry_interval](#up_wait_retry_interval)
- [max_etcd_attempts](#max_etcd_attempts) - [max_etcd_attempts](#max_etcd_attempts)
- [etcd_quick_timeout](#etcd_quick_timeout) - [etcd_quick_timeout](#etcd_quick_timeout)
- [etcd_slow_timeout](#etcd_slow_timeout) - [etcd_slow_timeout](#etcd_slow_timeout)
- [etcd_keepalive_timeout](#etcd_keepalive_timeout) - [etcd_keepalive_timeout](#etcd_keepalive_timeout)
- [etcd_ws_keepalive_interval](#etcd_ws_keepalive_interval) - [etcd_ws_keepalive_timeout](#etcd_ws_keepalive_timeout)
- [client_dirty_limit](#client_dirty_limit)
## tcp_header_buffer_size ## tcp_header_buffer_size
@ -68,20 +69,11 @@ but they are not connected to the cluster.
- Type: string - Type: string
RDMA device name to use for Vitastor OSD communications (for example, RDMA device name to use for Vitastor OSD communications (for example,
"rocep5s0f0"). If not specified, Vitastor will try to find an RoCE "rocep5s0f0"). Please note that Vitastor RDMA requires Implicit On-Demand
device matching [osd_network](osd.en.md#osd_network), preferring RoCEv2, Paging (Implicit ODP) and Scatter/Gather (SG) support from the RDMA device
or choose the first available RDMA device if no RoCE devices are to work. For example, Mellanox ConnectX-3 and older adapters don't have
found or if `osd_network` is not specified. Auto-selection is also Implicit ODP, so they're unsupported by Vitastor. Run `ibv_devinfo -v` as
unsupported with old libibverbs < v32, like in Debian 10 Buster or root to list available RDMA devices and their features.
CentOS 7.
Vitastor supports all adapters, even ones without ODP support, like
Mellanox ConnectX-3 and non-Mellanox cards. Versions up to Vitastor
1.2.0 required ODP which is only present in Mellanox ConnectX >= 4.
See also [rdma_odp](#rdma_odp).
Run `ibv_devinfo -v` as root to list available RDMA devices and their
features.
Remember that you also have to configure your network switches if you use Remember that you also have to configure your network switches if you use
RoCE/RoCEv2, otherwise you may experience unstable performance. Refer to RoCE/RoCEv2, otherwise you may experience unstable performance. Refer to
@ -101,17 +93,15 @@ your device has.
## rdma_gid_index ## rdma_gid_index
- Type: integer - Type: integer
- Default: 0
Global address identifier index of the RDMA device to use. Different GID Global address identifier index of the RDMA device to use. Different GID
indexes may correspond to different protocols like RoCEv1, RoCEv2 and iWARP. indexes may correspond to different protocols like RoCEv1, RoCEv2 and iWARP.
Search for "GID" in `ibv_devinfo -v` output to determine which GID index Search for "GID" in `ibv_devinfo -v` output to determine which GID index
you need. you need.
If not specified, Vitastor will try to auto-select a RoCEv2 IPv4 GID, then **IMPORTANT:** If you want to use RoCEv2 (as recommended) then the correct
RoCEv2 IPv6 GID, then RoCEv1 IPv4 GID, then RoCEv1 IPv6 GID, then IB GID. rdma_gid_index is usually 1 (IPv6) or 3 (IPv4).
GID auto-selection is unsupported with libibverbs < v32.
A correct rdma_gid_index for RoCEv2 is usually 1 (IPv6) or 3 (IPv4).
## rdma_mtu ## rdma_mtu
@ -158,28 +148,6 @@ less than `rdma_max_recv` so the receiving side doesn't run out of buffers.
Doesn't affect memory usage - additional memory isn't allocated for send Doesn't affect memory usage - additional memory isn't allocated for send
operations. operations.
## rdma_odp
- Type: boolean
- Default: false
Use RDMA with On-Demand Paging. ODP is currently only available on Mellanox
ConnectX-4 and newer adapters. ODP allows to not register memory explicitly
for RDMA adapter to be able to use it. This, in turn, allows to skip memory
copying during sending. One would think this should improve performance, but
**in reality** RDMA performance with ODP is **drastically** worse. Example
3-node cluster with 8 NVMe in each node and 2*25 GBit/s ConnectX-6 RDMA network
without ODP pushes 3950000 read iops, but only 239000 iops with ODP...
This happens because Mellanox ODP implementation seems to be based on
message retransmissions when the adapter doesn't know about the buffer yet -
it likely uses standard "RNR retransmissions" (RNR = receiver not ready)
which is generally slow in RDMA/RoCE networks. Here's a presentation about
it from ISPASS-2021 conference: https://tkygtr6.github.io/pub/ISPASS21_slides.pdf
ODP support is retained in the code just in case a good ODP implementation
appears one day.
## peer_connect_interval ## peer_connect_interval
- Type: seconds - Type: seconds
@ -219,6 +187,17 @@ Maximum time to wait for OSD keepalive responses. If an OSD doesn't respond
within this time, the connection to it is dropped and a reconnection attempt within this time, the connection to it is dropped and a reconnection attempt
is scheduled. is scheduled.
## up_wait_retry_interval
- Type: milliseconds
- Default: 500
- Minimum: 50
- Can be changed online: yes
OSDs respond to clients with a special error code when they receive I/O
requests for a PG that's not synchronized and started. This parameter sets
the time for the clients to wait before re-attempting such I/O requests.
## max_etcd_attempts ## max_etcd_attempts
- Type: integer - Type: integer
@ -253,11 +232,25 @@ Timeout for etcd requests which are allowed to wait for some time.
Timeout for etcd connection HTTP Keep-Alive. Should be higher than Timeout for etcd connection HTTP Keep-Alive. Should be higher than
etcd_report_interval to guarantee that keepalive actually works. etcd_report_interval to guarantee that keepalive actually works.
## etcd_ws_keepalive_interval ## etcd_ws_keepalive_timeout
- Type: seconds - Type: seconds
- Default: 5 - Default: 30
- Can be changed online: yes - Can be changed online: yes
etcd websocket ping interval required to keep the connection alive and etcd websocket ping interval required to keep the connection alive and
detect disconnections quickly. detect disconnections quickly.
## client_dirty_limit
- Type: integer
- Default: 33554432
- Can be changed online: yes
Without immediate_commit=all this parameter sets the limit of "dirty"
(not committed by fsync) data allowed by the client before forcing an
additional fsync and committing the data. Also note that the client always
holds a copy of uncommitted data in memory so this setting also affects
RAM usage of clients.
This parameter doesn't affect OSDs themselves.

View File

@ -20,16 +20,17 @@
- [rdma_max_msg](#rdma_max_msg) - [rdma_max_msg](#rdma_max_msg)
- [rdma_max_recv](#rdma_max_recv) - [rdma_max_recv](#rdma_max_recv)
- [rdma_max_send](#rdma_max_send) - [rdma_max_send](#rdma_max_send)
- [rdma_odp](#rdma_odp)
- [peer_connect_interval](#peer_connect_interval) - [peer_connect_interval](#peer_connect_interval)
- [peer_connect_timeout](#peer_connect_timeout) - [peer_connect_timeout](#peer_connect_timeout)
- [osd_idle_timeout](#osd_idle_timeout) - [osd_idle_timeout](#osd_idle_timeout)
- [osd_ping_timeout](#osd_ping_timeout) - [osd_ping_timeout](#osd_ping_timeout)
- [up_wait_retry_interval](#up_wait_retry_interval)
- [max_etcd_attempts](#max_etcd_attempts) - [max_etcd_attempts](#max_etcd_attempts)
- [etcd_quick_timeout](#etcd_quick_timeout) - [etcd_quick_timeout](#etcd_quick_timeout)
- [etcd_slow_timeout](#etcd_slow_timeout) - [etcd_slow_timeout](#etcd_slow_timeout)
- [etcd_keepalive_timeout](#etcd_keepalive_timeout) - [etcd_keepalive_timeout](#etcd_keepalive_timeout)
- [etcd_ws_keepalive_interval](#etcd_ws_keepalive_interval) - [etcd_ws_keepalive_timeout](#etcd_ws_keepalive_timeout)
- [client_dirty_limit](#client_dirty_limit)
## tcp_header_buffer_size ## tcp_header_buffer_size
@ -71,20 +72,12 @@ RDMA может быть нужно только если у клиентов е
- Тип: строка - Тип: строка
Название RDMA-устройства для связи с Vitastor OSD (например, "rocep5s0f0"). Название RDMA-устройства для связи с Vitastor OSD (например, "rocep5s0f0").
Если не указано, Vitastor попробует найти RoCE-устройство, соответствующее Имейте в виду, что поддержка RDMA в Vitastor требует функций устройства
[osd_network](osd.en.md#osd_network), предпочитая RoCEv2, или выбрать первое Implicit On-Demand Paging (Implicit ODP) и Scatter/Gather (SG). Например,
попавшееся RDMA-устройство, если RoCE-устройств нет или если сеть `osd_network` адаптеры Mellanox ConnectX-3 и более старые не поддерживают Implicit ODP и
не задана. Также автовыбор не поддерживается со старыми версиями библиотеки потому не поддерживаются в Vitastor. Запустите `ibv_devinfo -v` от имени
libibverbs < v32, например в Debian 10 Buster или CentOS 7. суперпользователя, чтобы посмотреть список доступных RDMA-устройств, их
параметры и возможности.
Vitastor поддерживает все модели адаптеров, включая те, у которых
нет поддержки ODP, то есть вы можете использовать RDMA с ConnectX-3 и
картами производства не Mellanox. Версии Vitastor до 1.2.0 включительно
требовали ODP, который есть только на Mellanox ConnectX 4 и более новых.
См. также [rdma_odp](#rdma_odp).
Запустите `ibv_devinfo -v` от имени суперпользователя, чтобы посмотреть
список доступных RDMA-устройств, их параметры и возможности.
Обратите внимание, что если вы используете RoCE/RoCEv2, вам также необходимо Обратите внимание, что если вы используете RoCE/RoCEv2, вам также необходимо
правильно настроить для него коммутаторы, иначе вы можете столкнуться с правильно настроить для него коммутаторы, иначе вы можете столкнуться с
@ -106,18 +99,15 @@ Control) и ECN (Explicit Congestion Notification).
## rdma_gid_index ## rdma_gid_index
- Тип: целое число - Тип: целое число
- Значение по умолчанию: 0
Номер глобального идентификатора адреса RDMA-устройства, который следует Номер глобального идентификатора адреса RDMA-устройства, который следует
использовать. Разным gid_index могут соответствовать разные протоколы связи: использовать. Разным gid_index могут соответствовать разные протоколы связи:
RoCEv1, RoCEv2, iWARP. Чтобы понять, какой нужен вам - смотрите строчки со RoCEv1, RoCEv2, iWARP. Чтобы понять, какой нужен вам - смотрите строчки со
словом "GID" в выводе команды `ibv_devinfo -v`. словом "GID" в выводе команды `ibv_devinfo -v`.
Если не указан, Vitastor попробует автоматически выбрать сначала GID, **ВАЖНО:** Если вы хотите использовать RoCEv2 (как мы и рекомендуем), то
соответствующий RoCEv2 IPv4, потом RoCEv2 IPv6, потом RoCEv1 IPv4, потом правильный rdma_gid_index, как правило, 1 (IPv6) или 3 (IPv4).
RoCEv1 IPv6, потом IB. Авто-выбор GID не поддерживается со старыми версиями
libibverbs < v32.
Правильный rdma_gid_index для RoCEv2, как правило, 1 (IPv6) или 3 (IPv4).
## rdma_mtu ## rdma_mtu
@ -166,29 +156,6 @@ OSD в любом случае согласовывают реальное зн
Не влияет на потребление памяти - дополнительная память на операции отправки Не влияет на потребление памяти - дополнительная память на операции отправки
не выделяется. не выделяется.
## rdma_odp
- Тип: булево (да/нет)
- Значение по умолчанию: false
Использовать RDMA с On-Demand Paging. ODP - функция, доступная пока что
исключительно на адаптерах Mellanox ConnectX-4 и более новых. ODP позволяет
не регистрировать память для её использования RDMA-картой. Благодаря этому
можно не копировать данные при отправке их в сеть и, казалось бы, это должно
улучшать производительность - но **по факту** получается так, что
производительность только ухудшается, причём сильно. Пример - на 3-узловом
кластере с 8 NVMe в каждом узле и сетью 2*25 Гбит/с на чтение с RDMA без ODP
удаётся снять 3950000 iops, а с ODP - всего 239000 iops...
Это происходит из-за того, что реализация ODP у Mellanox неоптимальная и
основана на повторной передаче сообщений, когда карте не известен буфер -
вероятно, на стандартных "RNR retransmission" (RNR = receiver not ready).
А данные повторные передачи в RDMA/RoCE - всегда очень медленная штука.
Презентация на эту тему с конференции ISPASS-2021: https://tkygtr6.github.io/pub/ISPASS21_slides.pdf
Возможность использования ODP сохранена в коде на случай, если вдруг в один
прекрасный день появится хорошая реализация ODP.
## peer_connect_interval ## peer_connect_interval
- Тип: секунды - Тип: секунды
@ -228,6 +195,19 @@ OSD в любом случае согласовывают реальное зн
Если OSD не отвечает за это время, соединение отключается и производится Если OSD не отвечает за это время, соединение отключается и производится
повторная попытка соединения. повторная попытка соединения.
## up_wait_retry_interval
- Тип: миллисекунды
- Значение по умолчанию: 500
- Минимальное значение: 50
- Можно менять на лету: да
Когда OSD получают от клиентов запросы ввода-вывода, относящиеся к не
поднятым на данный момент на них PG, либо к PG в процессе синхронизации,
они отвечают клиентам специальным кодом ошибки, означающим, что клиент
должен некоторое время подождать перед повторением запроса. Именно это время
ожидания задаёт данный параметр.
## max_etcd_attempts ## max_etcd_attempts
- Тип: целое число - Тип: целое число
@ -264,10 +244,24 @@ OSD в любом случае согласовывают реальное зн
Таймаут для HTTP Keep-Alive в соединениях к etcd. Должен быть больше, чем Таймаут для HTTP Keep-Alive в соединениях к etcd. Должен быть больше, чем
etcd_report_interval, чтобы keepalive гарантированно работал. etcd_report_interval, чтобы keepalive гарантированно работал.
## etcd_ws_keepalive_interval ## etcd_ws_keepalive_timeout
- Тип: секунды - Тип: секунды
- Значение по умолчанию: 5 - Значение по умолчанию: 30
- Можно менять на лету: да - Можно менять на лету: да
Интервал проверки живости вебсокет-подключений к etcd. Интервал проверки живости вебсокет-подключений к etcd.
## client_dirty_limit
- Тип: целое число
- Значение по умолчанию: 33554432
- Можно менять на лету: да
При работе без immediate_commit=all - это лимит объёма "грязных" (не
зафиксированных fsync-ом) данных, при достижении которого клиент будет
принудительно вызывать fsync и фиксировать данные. Также стоит иметь в виду,
что в этом случае до момента fsync клиент хранит копию незафиксированных
данных в памяти, то есть, настройка влияет на потребление памяти клиентами.
Параметр не влияет на сами OSD.

View File

@ -10,9 +10,7 @@ These parameters only apply to OSDs, are not fixed at the moment of OSD drive
initialization and can be changed - either with an OSD restart or, for some of initialization and can be changed - either with an OSD restart or, for some of
them, even without restarting by updating configuration in etcd. them, even without restarting by updating configuration in etcd.
- [osd_iothread_count](#osd_iothread_count)
- [etcd_report_interval](#etcd_report_interval) - [etcd_report_interval](#etcd_report_interval)
- [etcd_stats_interval](#etcd_stats_interval)
- [run_primary](#run_primary) - [run_primary](#run_primary)
- [osd_network](#osd_network) - [osd_network](#osd_network)
- [bind_address](#bind_address) - [bind_address](#bind_address)
@ -20,7 +18,6 @@ them, even without restarting by updating configuration in etcd.
- [autosync_interval](#autosync_interval) - [autosync_interval](#autosync_interval)
- [autosync_writes](#autosync_writes) - [autosync_writes](#autosync_writes)
- [recovery_queue_depth](#recovery_queue_depth) - [recovery_queue_depth](#recovery_queue_depth)
- [recovery_sleep_us](#recovery_sleep_us)
- [recovery_pg_switch](#recovery_pg_switch) - [recovery_pg_switch](#recovery_pg_switch)
- [recovery_sync_batch](#recovery_sync_batch) - [recovery_sync_batch](#recovery_sync_batch)
- [readonly](#readonly) - [readonly](#readonly)
@ -34,9 +31,6 @@ them, even without restarting by updating configuration in etcd.
- [max_flusher_count](#max_flusher_count) - [max_flusher_count](#max_flusher_count)
- [inmemory_metadata](#inmemory_metadata) - [inmemory_metadata](#inmemory_metadata)
- [inmemory_journal](#inmemory_journal) - [inmemory_journal](#inmemory_journal)
- [data_io](#data_io)
- [meta_io](#meta_io)
- [journal_io](#journal_io)
- [journal_sector_buffer_count](#journal_sector_buffer_count) - [journal_sector_buffer_count](#journal_sector_buffer_count)
- [journal_no_same_sector_overwrites](#journal_no_same_sector_overwrites) - [journal_no_same_sector_overwrites](#journal_no_same_sector_overwrites)
- [throttle_small_writes](#throttle_small_writes) - [throttle_small_writes](#throttle_small_writes)
@ -53,47 +47,17 @@ them, even without restarting by updating configuration in etcd.
- [scrub_list_limit](#scrub_list_limit) - [scrub_list_limit](#scrub_list_limit)
- [scrub_find_best](#scrub_find_best) - [scrub_find_best](#scrub_find_best)
- [scrub_ec_max_bruteforce](#scrub_ec_max_bruteforce) - [scrub_ec_max_bruteforce](#scrub_ec_max_bruteforce)
- [recovery_tune_interval](#recovery_tune_interval)
- [recovery_tune_util_low](#recovery_tune_util_low)
- [recovery_tune_util_high](#recovery_tune_util_high)
- [recovery_tune_client_util_low](#recovery_tune_client_util_low)
- [recovery_tune_client_util_high](#recovery_tune_client_util_high)
- [recovery_tune_agg_interval](#recovery_tune_agg_interval)
- [recovery_tune_sleep_min_us](#recovery_tune_sleep_min_us)
- [recovery_tune_sleep_cutoff_us](#recovery_tune_sleep_cutoff_us)
## osd_iothread_count
- Type: integer
- Default: 0
TCP network I/O thread count for OSD. When non-zero, a single OSD process
may handle more TCP I/O, but at a cost of increased latency because thread
switching overhead occurs. RDMA isn't affected by this option.
Because of latency, instead of enabling OSD I/O threads it's recommended to
just create multiple OSDs per disk, or use RDMA.
## etcd_report_interval ## etcd_report_interval
- Type: seconds - Type: seconds
- Default: 5 - Default: 5
Interval at which OSDs report their liveness to etcd. Affects OSD lease time Interval at which OSDs report their state to etcd. Affects OSD lease time
and thus the failover speed. Lease time is equal to this parameter value and thus the failover speed. Lease time is equal to this parameter value
plus max_etcd_attempts * etcd_quick_timeout because it should be guaranteed plus max_etcd_attempts * etcd_quick_timeout because it should be guaranteed
that every OSD always refreshes its lease in time. that every OSD always refreshes its lease in time.
## etcd_stats_interval
- Type: seconds
- Default: 30
Interval at which OSDs report their statistics to etcd. Highly affects the
imposed load on etcd, because statistics include a key for every OSD and
for every PG. At the same time, low statistic intervals make `vitastor-cli`
statistics more responsive.
## run_primary ## run_primary
- Type: boolean - Type: boolean
@ -157,24 +121,12 @@ operations before issuing an fsync operation internally.
## recovery_queue_depth ## recovery_queue_depth
- Type: integer - Type: integer
- Default: 1 - Default: 4
- Can be changed online: yes - Can be changed online: yes
Maximum recovery and rebalance operations initiated by each OSD in parallel. Maximum recovery operations per one primary OSD at any given moment of time.
Note that each OSD talks to a lot of other OSDs so actual number of parallel Currently it's the only parameter available to tune the speed or recovery
recovery operations per each OSD is greater than just recovery_queue_depth. and rebalancing, but it's planned to implement more.
Increasing this parameter can speedup recovery if [auto-tuning](#recovery_tune_interval)
allows it or if it is disabled.
## recovery_sleep_us
- Type: microseconds
- Default: 0
- Can be changed online: yes
Delay for all recovery- and rebalance- related operations. If non-zero,
such operations are artificially slowed down to reduce the impact on
client I/O.
## recovery_pg_switch ## recovery_pg_switch
@ -303,60 +255,6 @@ is typically very small because it's sufficient to have 16-32 MB journal
for SSD OSDs. However, in theory it's possible that you'll want to turn it for SSD OSDs. However, in theory it's possible that you'll want to turn it
off for hybrid (HDD+SSD) OSDs with large journals on quick devices. off for hybrid (HDD+SSD) OSDs with large journals on quick devices.
## data_io
- Type: string
- Default: direct
I/O mode for *data*. One of "direct", "cached" or "directsync". Corresponds
to O_DIRECT, O_SYNC and O_DIRECT|O_SYNC, respectively.
Choose "cached" to use Linux page cache. This may improve read performance
for hot data and slower disks - HDDs and maybe SATA SSDs - but will slightly
decrease write performance for fast disks because page cache is an overhead
itself.
Choose "directsync" to use [immediate_commit](layout-cluster.ru.md#immediate_commit)
(which requires disable_data_fsync) with drives having write-back cache
which can't be turned off, for example, Intel Optane. Also note that *some*
desktop SSDs (for example, HP EX950) may ignore O_SYNC thus making
disable_data_fsync unsafe even with "directsync".
## meta_io
- Type: string
- Default: direct
I/O mode for *metadata*. One of "direct", "cached" or "directsync".
"cached" may improve read performance, but only under the following conditions:
1. your drives are relatively slow (HDD, SATA SSD), and
2. checksums are enabled, and
3. [inmemory_metadata](#inmemory_metadata) is disabled.
Under all these conditions, metadata blocks are read from disk on every
read request to verify checksums and caching them may reduce this extra
read load. Without (3) metadata is never read from the disk after starting,
and without (2) metadata blocks are read from disk only during journal
flushing.
"directsync" is the same as above.
If the same device is used for data and metadata, meta_io by default is set
to the same value as [data_io](#data_io).
## journal_io
- Type: string
- Default: direct
I/O mode for *journal*. One of "direct", "cached" or "directsync".
Here, "cached" may only improve read performance for recent writes and
only if [inmemory_journal](#inmemory_journal) is turned off.
If the same device is used for metadata and journal, journal_io by default
is set to the same value as [meta_io](#meta_io).
## journal_sector_buffer_count ## journal_sector_buffer_count
- Type: integer - Type: integer
@ -542,90 +440,3 @@ the variant with most available equal copies is correct. For example, if
you have 3 replicas and 1 of them differs, this one is considered to be you have 3 replicas and 1 of them differs, this one is considered to be
corrupted. But if there is no "best" version with more copies than all corrupted. But if there is no "best" version with more copies than all
others have then the object is also marked as inconsistent. others have then the object is also marked as inconsistent.
## recovery_tune_interval
- Type: seconds
- Default: 1
- Can be changed online: yes
Interval at which OSD re-considers client and recovery load and automatically
adjusts [recovery_sleep_us](#recovery_sleep_us). Recovery auto-tuning is
disabled if recovery_tune_interval is set to 0.
Auto-tuning targets utilization. Utilization is a measure of load and is
equal to the product of iops and average latency (so it may be greater
than 1). You set "low" and "high" client utilization thresholds and two
corresponding target recovery utilization levels. OSD calculates desired
recovery utilization from client utilization using linear interpolation
and auto-tunes recovery operation delay to make actual recovery utilization
match desired.
This allows to reduce recovery/rebalance impact on client operations. It is
of course impossible to remove it completely, but it should become adequate.
In some tests rebalance could earlier drop client write speed from 1.5 GB/s
to 50-100 MB/s, with default auto-tuning settings it now only reduces
to ~1 GB/s.
## recovery_tune_util_low
- Type: number
- Default: 0.1
- Can be changed online: yes
Desired recovery/rebalance utilization when client load is high, i.e. when
it is at or above recovery_tune_client_util_high.
## recovery_tune_util_high
- Type: number
- Default: 1
- Can be changed online: yes
Desired recovery/rebalance utilization when client load is low, i.e. when
it is at or below recovery_tune_client_util_low.
## recovery_tune_client_util_low
- Type: number
- Default: 0
- Can be changed online: yes
Client utilization considered "low".
## recovery_tune_client_util_high
- Type: number
- Default: 0.5
- Can be changed online: yes
Client utilization considered "high".
## recovery_tune_agg_interval
- Type: integer
- Default: 10
- Can be changed online: yes
The number of last auto-tuning iterations to use for calculating the
delay as average. Lower values result in quicker response to client
load change, higher values result in more stable delay. Default value of 10
is usually fine.
## recovery_tune_sleep_min_us
- Type: microseconds
- Default: 10
- Can be changed online: yes
Minimum possible value for auto-tuned recovery_sleep_us. Lower values
are changed to 0.
## recovery_tune_sleep_cutoff_us
- Type: microseconds
- Default: 10000000
- Can be changed online: yes
Maximum possible value for auto-tuned recovery_sleep_us. Higher values
are treated as outliers and ignored in aggregation.

View File

@ -11,9 +11,7 @@
момент с помощью перезапуска OSD, а некоторые и без перезапуска, с помощью момент с помощью перезапуска OSD, а некоторые и без перезапуска, с помощью
изменения конфигурации в etcd. изменения конфигурации в etcd.
- [osd_iothread_count](#osd_iothread_count)
- [etcd_report_interval](#etcd_report_interval) - [etcd_report_interval](#etcd_report_interval)
- [etcd_stats_interval](#etcd_stats_interval)
- [run_primary](#run_primary) - [run_primary](#run_primary)
- [osd_network](#osd_network) - [osd_network](#osd_network)
- [bind_address](#bind_address) - [bind_address](#bind_address)
@ -21,7 +19,6 @@
- [autosync_interval](#autosync_interval) - [autosync_interval](#autosync_interval)
- [autosync_writes](#autosync_writes) - [autosync_writes](#autosync_writes)
- [recovery_queue_depth](#recovery_queue_depth) - [recovery_queue_depth](#recovery_queue_depth)
- [recovery_sleep_us](#recovery_sleep_us)
- [recovery_pg_switch](#recovery_pg_switch) - [recovery_pg_switch](#recovery_pg_switch)
- [recovery_sync_batch](#recovery_sync_batch) - [recovery_sync_batch](#recovery_sync_batch)
- [readonly](#readonly) - [readonly](#readonly)
@ -35,9 +32,6 @@
- [max_flusher_count](#max_flusher_count) - [max_flusher_count](#max_flusher_count)
- [inmemory_metadata](#inmemory_metadata) - [inmemory_metadata](#inmemory_metadata)
- [inmemory_journal](#inmemory_journal) - [inmemory_journal](#inmemory_journal)
- [data_io](#data_io)
- [meta_io](#meta_io)
- [journal_io](#journal_io)
- [journal_sector_buffer_count](#journal_sector_buffer_count) - [journal_sector_buffer_count](#journal_sector_buffer_count)
- [journal_no_same_sector_overwrites](#journal_no_same_sector_overwrites) - [journal_no_same_sector_overwrites](#journal_no_same_sector_overwrites)
- [throttle_small_writes](#throttle_small_writes) - [throttle_small_writes](#throttle_small_writes)
@ -54,48 +48,17 @@
- [scrub_list_limit](#scrub_list_limit) - [scrub_list_limit](#scrub_list_limit)
- [scrub_find_best](#scrub_find_best) - [scrub_find_best](#scrub_find_best)
- [scrub_ec_max_bruteforce](#scrub_ec_max_bruteforce) - [scrub_ec_max_bruteforce](#scrub_ec_max_bruteforce)
- [recovery_tune_interval](#recovery_tune_interval)
- [recovery_tune_util_low](#recovery_tune_util_low)
- [recovery_tune_util_high](#recovery_tune_util_high)
- [recovery_tune_client_util_low](#recovery_tune_client_util_low)
- [recovery_tune_client_util_high](#recovery_tune_client_util_high)
- [recovery_tune_agg_interval](#recovery_tune_agg_interval)
- [recovery_tune_sleep_min_us](#recovery_tune_sleep_min_us)
- [recovery_tune_sleep_cutoff_us](#recovery_tune_sleep_cutoff_us)
## osd_iothread_count
- Тип: целое число
- Значение по умолчанию: 0
Число отдельных потоков для обработки ввода-вывода через TCP-сеть на
стороне OSD. Включение опции позволяет каждому отдельному OSD передавать
по сети больше данных, но ухудшает задержку из-за накладных расходов
переключения потоков. На работу RDMA опция не влияет.
Из-за задержек вместо включения потоков ввода-вывода OSD рекомендуется
просто создавать по несколько OSD на каждом диске, или использовать RDMA.
## etcd_report_interval ## etcd_report_interval
- Тип: секунды - Тип: секунды
- Значение по умолчанию: 5 - Значение по умолчанию: 5
Интервал, с которым OSD сообщает о том, что жив, в etcd. Значение параметра Интервал, с которым OSD обновляет своё состояние в etcd. Значение параметра
влияет на время резервации (lease) OSD и поэтому - на скорость переключения влияет на время резервации (lease) OSD и поэтому на скорость переключения
при падении OSD. Время lease равняется значению этого параметра плюс при падении OSD. Время lease равняется значению этого параметра плюс
max_etcd_attempts * etcd_quick_timeout. max_etcd_attempts * etcd_quick_timeout.
## etcd_stats_interval
- Тип: секунды
- Значение по умолчанию: 30
Интервал, с которым OSD обновляет свою статистику в etcd. Сильно влияет на
создаваемую нагрузку на etcd, потому что статистика содержит по ключу на
каждый OSD и на каждую PG. В то же время низкий интервал делает
статистику, печатаемую `vitastor-cli`, отзывчивей.
## run_primary ## run_primary
- Тип: булево (да/нет) - Тип: булево (да/нет)
@ -161,25 +124,13 @@ OSD, чтобы успевать очищать журнал - без них OSD
## recovery_queue_depth ## recovery_queue_depth
- Тип: целое число - Тип: целое число
- Значение по умолчанию: 1 - Значение по умолчанию: 4
- Можно менять на лету: да - Можно менять на лету: да
Максимальное число параллельных операций восстановления, инициируемых одним Максимальное число операций восстановления на одном первичном OSD в любой
OSD в любой момент времени. Имейте в виду, что каждый OSD обычно работает с момент времени. На данный момент единственный параметр, который можно менять
многими другими OSD, так что на практике параллелизм восстановления больше, для ускорения или замедления восстановления и перебалансировки данных, но
чем просто recovery_queue_depth. Увеличение значения этого параметра может в планах реализация других параметров.
ускорить восстановление если [автотюнинг скорости](#recovery_tune_interval)
разрешает это или если он отключён.
## recovery_sleep_us
- Тип: микросекунды
- Значение по умолчанию: 0
- Можно менять на лету: да
Delay for all recovery- and rebalance- related operations. If non-zero,
such operations are artificially slowed down to reduce the impact on
client I/O.
## recovery_pg_switch ## recovery_pg_switch
@ -312,63 +263,6 @@ Flusher - это микро-поток (корутина), которая коп
параметра может оказаться полезным для гибридных OSD (HDD+SSD) с большими параметра может оказаться полезным для гибридных OSD (HDD+SSD) с большими
журналами, расположенными на быстром по сравнению с HDD устройстве. журналами, расположенными на быстром по сравнению с HDD устройстве.
## data_io
- Тип: строка
- Значение по умолчанию: direct
Режим ввода-вывода для *данных*. Одно из значений "direct", "cached" или
"directsync", означающих O_DIRECT, O_SYNC и O_DIRECT|O_SYNC, соответственно.
Выберите "cached", чтобы использовать системный кэш Linux (page cache) при
чтении и записи. Это может улучшить скорость чтения горячих данных с
относительно медленных дисков - HDD и, возможно, SATA SSD - но немного
снижает производительность записи для быстрых дисков, так как кэш сам по
себе тоже добавляет накладные расходы.
Выберите "directsync", если хотите задействовать
[immediate_commit](layout-cluster.ru.md#immediate_commit) (требующий
включенияd disable_data_fsync) на дисках с неотключаемым кэшем. Пример таких
дисков - Intel Optane. При этом также стоит иметь в виду, что *некоторые*
настольные SSD (например, HP EX950) игнорируют флаг O_SYNC, делая отключение
fsync небезопасным даже с режимом "directsync".
## meta_io
- Тип: строка
- Значение по умолчанию: direct
Режим ввода-вывода для *метаданных*. Одно из значений "direct", "cached" или
"directsync".
"cached" может улучшить скорость чтения, если:
1. у вас медленные диски (HDD, SATA SSD)
2. контрольные суммы включены
3. параметр [inmemory_metadata](#inmemory_metadata) отключён.
При этих условиях блоки метаданных читаются с диска при каждом запросе чтения
для проверки контрольных сумм и их кэширование может снизить дополнительную
нагрузку на диск. Без (3) метаданные никогда не читаются с диска после
запуска OSD, а без (2) блоки метаданных читаются только при сбросе журнала.
Если одно и то же устройство используется для данных и метаданных, режим
ввода-вывода метаданных по умолчанию устанавливается равным [data_io](#data_io).
## journal_io
- Тип: строка
- Значение по умолчанию: direct
Режим ввода-вывода для *журнала*. Одно из значений "direct", "cached" или
"directsync".
Здесь "cached" может улучшить скорость чтения только недавно записанных
данных и только если параметр [inmemory_journal](#inmemory_journal)
отключён.
Если одно и то же устройство используется для метаданных и журнала,
режим ввода-вывода журнала по умолчанию устанавливается равным
[meta_io](#meta_io).
## journal_sector_buffer_count ## journal_sector_buffer_count
- Тип: целое число - Тип: целое число
@ -570,93 +464,3 @@ EC (кодов коррекции ошибок) с более, чем 1 диск
считается некорректной. Однако, если "лучшую" версию с числом доступных считается некорректной. Однако, если "лучшую" версию с числом доступных
копий большим, чем у всех других версий, найти невозможно, то объект тоже копий большим, чем у всех других версий, найти невозможно, то объект тоже
маркируется неконсистентным. маркируется неконсистентным.
## recovery_tune_interval
- Тип: секунды
- Значение по умолчанию: 1
- Можно менять на лету: да
Интервал, с которым OSD пересматривает клиентскую нагрузку и нагрузку
восстановления и автоматически подстраивает [recovery_sleep_us](#recovery_sleep_us).
Автотюнинг (автоподстройка) отключается, если recovery_tune_interval
устанавливается в значение 0.
Автотюнинг регулирует утилизацию. Утилизация является мерой нагрузки
и равна произведению числа операций в секунду и средней задержки
(то есть, она может быть выше 1). Вы задаёте два уровня клиентской
утилизации - "низкий" и "высокий" (low и high) и два соответствующих
целевых уровня утилизации операциями восстановления. OSD рассчитывает
желаемый уровень утилизации восстановления линейной интерполяцией от
клиентской утилизации и подстраивает задержку операций восстановления
так, чтобы фактическая утилизация восстановления совпадала с желаемой.
Это позволяет снизить влияние восстановления и ребаланса на клиентские
операции. Конечно, невозможно исключить такое влияние полностью, но оно
должно становиться адекватнее. В некоторых тестах перебалансировка могла
снижать клиентскую скорость записи с 1.5 ГБ/с до 50-100 МБ/с, а теперь, с
настройками автотюнинга по умолчанию, она снижается только до ~1 ГБ/с.
## recovery_tune_util_low
- Тип: число
- Значение по умолчанию: 0.1
- Можно менять на лету: да
Желаемая утилизация восстановления в моменты, когда клиентская нагрузка
высокая, то есть, находится на уровне или выше recovery_tune_client_util_high.
## recovery_tune_util_high
- Тип: число
- Значение по умолчанию: 1
- Можно менять на лету: да
Желаемая утилизация восстановления в моменты, когда клиентская нагрузка
низкая, то есть, находится на уровне или ниже recovery_tune_client_util_low.
## recovery_tune_client_util_low
- Тип: число
- Значение по умолчанию: 0
- Можно менять на лету: да
Клиентская утилизация, которая считается "низкой".
## recovery_tune_client_util_high
- Тип: число
- Значение по умолчанию: 0.5
- Можно менять на лету: да
Клиентская утилизация, которая считается "высокой".
## recovery_tune_agg_interval
- Тип: целое число
- Значение по умолчанию: 10
- Можно менять на лету: да
Число последних итераций автоподстройки для расчёта задержки как среднего
значения. Меньшие значения параметра ускоряют отклик на изменение нагрузки,
большие значения делают задержку стабильнее. Значение по умолчанию 10
обычно нормальное и не требует изменений.
## recovery_tune_sleep_min_us
- Тип: микросекунды
- Значение по умолчанию: 10
- Можно менять на лету: да
Минимальное возможное значение авто-подстроенного recovery_sleep_us.
Меньшие значения заменяются на 0.
## recovery_tune_sleep_cutoff_us
- Тип: микросекунды
- Значение по умолчанию: 10000000
- Можно менять на лету: да
Максимальное возможное значение авто-подстроенного recovery_sleep_us.
Большие значения считаются случайными выбросами и игнорируются в
усреднении.

View File

@ -32,8 +32,6 @@ Parameters:
- [pg_minsize](#pg_minsize) - [pg_minsize](#pg_minsize)
- [pg_count](#pg_count) - [pg_count](#pg_count)
- [failure_domain](#failure_domain) - [failure_domain](#failure_domain)
- [level_placement](#level_placement)
- [raw_placement](#raw_placement)
- [max_osd_combinations](#max_osd_combinations) - [max_osd_combinations](#max_osd_combinations)
- [block_size](#block_size) - [block_size](#block_size)
- [bitmap_granularity](#bitmap_granularity) - [bitmap_granularity](#bitmap_granularity)
@ -43,7 +41,6 @@ Parameters:
- [osd_tags](#osd_tags) - [osd_tags](#osd_tags)
- [primary_affinity_tags](#primary_affinity_tags) - [primary_affinity_tags](#primary_affinity_tags)
- [scrub_interval](#scrub_interval) - [scrub_interval](#scrub_interval)
- [used_for_fs](#used_for_fs)
Examples: Examples:
@ -55,7 +52,7 @@ Examples:
OSD placement tree is set in a separate etcd key `/vitastor/config/node_placement` OSD placement tree is set in a separate etcd key `/vitastor/config/node_placement`
in the following JSON format: in the following JSON format:
``` `
{ {
"<node name or OSD number>": { "<node name or OSD number>": {
"level": "<level>", "level": "<level>",
@ -63,7 +60,7 @@ in the following JSON format:
}, },
... ...
} }
``` `
Here, if a node name is a number then it is assumed to refer to an OSD. Here, if a node name is a number then it is assumed to refer to an OSD.
Level of the OSD is always "osd" and cannot be overriden. You may only Level of the OSD is always "osd" and cannot be overriden. You may only
@ -86,11 +83,7 @@ Parent node reference is required for intermediate tree nodes.
Separate OSD settings are set in etc keys `/vitastor/config/osd/<number>` Separate OSD settings are set in etc keys `/vitastor/config/osd/<number>`
in JSON format `{"<key>":<value>}`. in JSON format `{"<key>":<value>}`.
As of now, the following settings are supported: As of now, two settings are supported:
- [reweight](#reweight)
- [tags](#tags)
- [noout](#noout)
## reweight ## reweight
@ -113,14 +106,6 @@ subsets and then use a specific subset for pool instead of all OSDs.
For example you can mark SSD OSDs with tag "ssd" and HDD OSDs with "hdd" and For example you can mark SSD OSDs with tag "ssd" and HDD OSDs with "hdd" and
such tags will work as device classes. such tags will work as device classes.
## noout
- Type: boolean
- Default: false
If set to true, [osd_out_time](monitor.en.md#osd_out_time) is ignored for this
OSD and it's never removed from data distribution by the monitor.
# Pool parameters # Pool parameters
## name ## name
@ -169,26 +154,6 @@ That is, if it becomes impossible to place PG data on at least (pg_minsize)
OSDs, PG is deactivated for both read and write. So you know that a fresh OSDs, PG is deactivated for both read and write. So you know that a fresh
write always goes to at least (pg_minsize) OSDs (disks). write always goes to at least (pg_minsize) OSDs (disks).
For example, the difference between pg_minsize 2 and 1 in a 3-way replicated
pool (pg_size=3) is:
- If 2 hosts go down with pg_minsize=2, the pool becomes inactive and remains
inactive for [osd_out_time](monitor.en.md#osd_out_time) (10 minutes). After
this timeout, the monitor selects replacement hosts/OSDs and the pool comes
up and starts to heal. Therefore, if you don't have replacement OSDs, i.e.
if you only have 3 hosts with OSDs and 2 of them are down, the pool remains
inactive until you add or return at least 1 host (or change failure_domain
to "osd").
- If 2 hosts go down with pg_minsize=1, the pool only experiences a short
I/O pause until the monitor notices that OSDs are down (5-10 seconds with
the default [etcd_report_interval](osd.en.md#etcd_report_interval)). After
this pause, I/O resumes, but new data is temporarily written in only 1 copy.
Then, after osd_out_time, the monitor also selects replacement OSDs and the
pool starts to heal.
So, pg_minsize regulates the number of failures that a pool can tolerate
without temporary downtime for [osd_out_time](monitor.en.md#osd_out_time),
but at a cost of slightly reduced storage reliability.
FIXME: pg_minsize behaviour may be changed in the future to only make PGs FIXME: pg_minsize behaviour may be changed in the future to only make PGs
read-only instead of deactivating them. read-only instead of deactivating them.
@ -200,8 +165,8 @@ read-only instead of deactivating them.
Number of PGs for this pool. The value should be big enough for the monitor / Number of PGs for this pool. The value should be big enough for the monitor /
LP solver to be able to optimize data placement. LP solver to be able to optimize data placement.
"Enough" is usually around 10-100 PGs per OSD, i.e. you set pg_count for pool "Enough" is usually around 64-128 PGs per OSD, i.e. you set pg_count for pool
to (total OSD count * 10 / pg_size). You can round it to the closest power of 2, to (total OSD count * 100 / pg_size). You can round it to the closest power of 2,
because it makes it easier to reduce or increase PG count later by dividing or because it makes it easier to reduce or increase PG count later by dividing or
multiplying it by 2. multiplying it by 2.
@ -223,69 +188,6 @@ never put on OSDs in the same failure domain (for example, on the same host).
So failure domain specifies the unit which failure you are protecting yourself So failure domain specifies the unit which failure you are protecting yourself
from. from.
## level_placement
- Type: string
Additional failure domain rules, applied in conjuction with failure_domain.
Must be specified in the following form:
`<placement level>=<sequence of characters>, <level2>=<sequence2>, ...`
Sequence should be exactly [pg_size](#pg_size) character long. Each character
corresponds to an OSD in the PG of this pool. Equal characters mean that
corresponding items of the PG should be placed into the same placement tree
item at this level. Different characters mean that items should be placed into
different items.
For example, if you want a EC 4+2 pool and you want every 2 chunks to be stored
in its own datacenter and you also want each chunk to be stored on a different
host, you should set `level_placement` to `dc=112233 host=123456`.
Or you can set `level_placement` to `dc=112233` and leave `failure_domain` empty,
because `host` is the default `failure_domain` and it will be applied anyway.
Without this rule, it may happen that 3 chunks will be stored on OSDs in the
same datacenter, and the data will become inaccessibly if that datacenter goes
down in this case.
Of course, you should group your hosts into datacenters before applying the rule
by setting [placement_levels](monitor.en.md#placement_levels) to something like
`{"dc":90,"host":100,"osd":110}` and add DCs to [node_placement](#placement-tree),
like `{"dc1":{"level":"dc"},"host1":{"parent":"dc1"},...}`.
## raw_placement
- Type: string
Raw PG placement rules, specified in the form of a DSL (domain-specific language).
Use only if you really know what you're doing :)
DSL specification:
```
dsl := item | item ("\n" | ",") items
item := "any" | rules
rules := rule | rule rules
rule := level operator arg
level := /\w+/
operator := "!=" | "=" | ">" | "?="
arg := value | "(" values ")"
values := value | value "," values
value := item_ref | constant_id
item_ref := /\d+/
constant_id := /"([^"]+)"/
```
"?=" operator means "preferred". I.e. `dc ?= "meow"` means "prefer datacenter meow
for this chunk, but put into another dc if it's unavailable".
Examples:
- Simple 3 replicas with failure_domain=host: `any, host!=1, host!=(1,2)`
- EC 4+2 in 3 DC: `any, dc=1 host!=1, dc!=1, dc=3 host!=3, dc!=(1,3), dc=5 host!=5`
- 1 replica in fixed DC + 2 in random DCs: `dc?=meow, dc!=1, dc!=(1,2)`
## max_osd_combinations ## max_osd_combinations
- Type: integer - Type: integer
@ -303,8 +205,9 @@ This parameter usually doesn't require to be changed.
- Default: 131072 - Default: 131072
Block size for this pool. The value from /vitastor/config/global is used when Block size for this pool. The value from /vitastor/config/global is used when
unspecified. Only OSDs with matching block_size are used for each pool. If you unspecified. If your cluster has OSDs with different block sizes then pool must
want to further restrict OSDs for the pool, use [osd_tags](#osd_tags). be restricted by [osd_tags](#osd_tags) to only include OSDs with matching block
size.
Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#block_size). Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#block_size).
@ -313,9 +216,10 @@ Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-c
- Type: integer - Type: integer
- Default: 4096 - Default: 4096
"Sector" size of virtual disks in this pool. The value from /vitastor/config/global "Sector" size of virtual disks in this pool. The value from
is used when unspecified. Similarly to block_size, only OSDs with matching /vitastor/config/global is used when unspecified. Similar to block_size, the
bitmap_granularity are used for each pool. pool must be restricted by [osd_tags](#osd_tags) to only include OSDs with
matching bitmap_granularity.
Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#bitmap_granularity). Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#bitmap_granularity).
@ -325,11 +229,10 @@ Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-c
- Default: none - Default: none
Immediate commit setting for this pool. The value from /vitastor/config/global Immediate commit setting for this pool. The value from /vitastor/config/global
is used when unspecified. Similarly to block_size, only OSDs with compatible is used when unspecified. Similar to block_size, the pool must be restricted by
bitmap_granularity are used for each pool. "Compatible" means that a pool with [osd_tags](#osd_tags) to only include OSDs with compatible immediate_commit.
non-immediate commit will use OSDs with immediate commit enabled, but not vice Compatible means that a pool with non-immediate commit will work with OSDs with
versa. I.e., pools with "none" use all OSDs, pools with "small" only use OSDs immediate commit enabled, but not vice versa.
with "all" or "small", and pools with "all" only use OSDs with "all".
Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#immediate_commit). Read more about this parameter in [Cluster-Wide Disk Layout Parameters](layout-cluster.en.md#immediate_commit).
@ -377,25 +280,6 @@ of the OSDs containing a data chunk for a PG.
Automatic scrubbing interval for this pool. Overrides Automatic scrubbing interval for this pool. Overrides
[global scrub_interval setting](osd.en.md#scrub_interval). [global scrub_interval setting](osd.en.md#scrub_interval).
## used_for_fs
- Type: string
If non-empty, the pool is marked as used for VitastorFS with metadata stored
in block image (regular Vitastor volume) named as the value of this pool parameter.
When a pool is marked as used for VitastorFS, regular block volume creation in it
is disabled (vitastor-cli refuses to create images without --force) to protect
the user from block volume and FS file ID collisions and data loss.
[vitastor-nfs](../usage/nfs.ru.md), in its turn, refuses to use pools not marked
for the corresponding FS when starting. This also implies that you can use one
pool only for one VitastorFS.
The second thing that is disabled for VitastorFS pools is reporting per-inode space
usage statistics in etcd because a FS pool may store a very large number of files
and statistics for them all would take a lot of space in etcd.
# Examples # Examples
## Replicated pool ## Replicated pool

View File

@ -31,8 +31,6 @@
- [pg_minsize](#pg_minsize) - [pg_minsize](#pg_minsize)
- [pg_count](#pg_count) - [pg_count](#pg_count)
- [failure_domain](#failure_domain) - [failure_domain](#failure_domain)
- [level_placement](#level_placement)
- [raw_placement](#raw_placement)
- [max_osd_combinations](#max_osd_combinations) - [max_osd_combinations](#max_osd_combinations)
- [block_size](#block_size) - [block_size](#block_size)
- [bitmap_granularity](#bitmap_granularity) - [bitmap_granularity](#bitmap_granularity)
@ -42,7 +40,6 @@
- [osd_tags](#osd_tags) - [osd_tags](#osd_tags)
- [primary_affinity_tags](#primary_affinity_tags) - [primary_affinity_tags](#primary_affinity_tags)
- [scrub_interval](#scrub_interval) - [scrub_interval](#scrub_interval)
- [used_for_fs](#used_for_fs)
Примеры: Примеры:
@ -54,7 +51,7 @@
Дерево размещения OSD задаётся в отдельном ключе etcd `/vitastor/config/node_placement` Дерево размещения OSD задаётся в отдельном ключе etcd `/vitastor/config/node_placement`
в следующем JSON-формате: в следующем JSON-формате:
``` `
{ {
"<имя узла или номер OSD>": { "<имя узла или номер OSD>": {
"level": "<уровень>", "level": "<уровень>",
@ -62,7 +59,7 @@
}, },
... ...
} }
``` `
Здесь, если название узла - число, считается, что это OSD. Уровень OSD Здесь, если название узла - число, считается, что это OSD. Уровень OSD
всегда равен "osd" и не может быть переопределён. Для OSD вы можете только всегда равен "osd" и не может быть переопределён. Для OSD вы можете только
@ -85,11 +82,10 @@
Настройки отдельных OSD задаются в ключах etcd `/vitastor/config/osd/<number>` Настройки отдельных OSD задаются в ключах etcd `/vitastor/config/osd/<number>`
в JSON-формате `{"<key>":<value>}`. в JSON-формате `{"<key>":<value>}`.
На данный момент поддерживаются следующие настройки: На данный момент поддерживаются две настройки:
- [reweight](#reweight) - [reweight](#reweight)
- [tags](#tags) - [tags](#tags)
- [noout](#noout)
## reweight ## reweight
@ -113,14 +109,6 @@
всех. Можно, например, пометить SSD OSD тегом "ssd", а HDD тегом "hdd", в всех. Можно, например, пометить SSD OSD тегом "ssd", а HDD тегом "hdd", в
этом смысле теги работают аналогично классам устройств. этом смысле теги работают аналогично классам устройств.
## noout
- Тип: булево (да/нет)
- Значение по умолчанию: false
Если установлено в true, то [osd_out_time](monitor.ru.md#osd_out_time) для этого
OSD игнорируется и OSD не удаляется из распределения данных монитором.
# Параметры # Параметры
## name ## name
@ -169,26 +157,6 @@ OSD игнорируется и OSD не удаляется из распред
OSD, PG деактивируется на чтение и запись. Иными словами, всегда известно, OSD, PG деактивируется на чтение и запись. Иными словами, всегда известно,
что новые блоки данных всегда записываются как минимум на pg_minsize дисков. что новые блоки данных всегда записываются как минимум на pg_minsize дисков.
Для примера, разница между pg_minsize 2 и 1 в реплицированном пуле с 3 копиями
данных (pg_size=3), проявляется следующим образом:
- Если 2 сервера отключаются при pg_minsize=2, пул становится неактивным и
остаётся неактивным в течение [osd_out_time](monitor.ru.md#osd_out_time)
(10 минут), после чего монитор назначает другие OSD/серверы на замену, пул
поднимается и начинает восстанавливать недостающие копии данных. Соответственно,
если OSD на замену нет - то есть, если у вас всего 3 сервера с OSD и 2 из них
недоступны - пул так и остаётся недоступным до тех пор, пока вы не вернёте
или не добавите хотя бы 1 сервер (или не переключите failure_domain на "osd").
- Если 2 сервера отключаются при pg_minsize=1, ввод-вывод лишь приостанавливается
на короткое время, до тех пор, пока монитор не поймёт, что OSD отключены
(что занимает 5-10 секунд при стандартном [etcd_report_interval](osd.ru.md#etcd_report_interval)).
После этого ввод-вывод восстанавливается, но новые данные временно пишутся
всего в 1 копии. Когда же проходит osd_out_time, монитор точно так же назначает
другие OSD на замену выбывшим и пул начинает восстанавливать копии данных.
То есть, pg_minsize регулирует число отказов, которые пул может пережить без
временной остановки обслуживания на [osd_out_time](monitor.ru.md#osd_out_time),
но ценой немного пониженных гарантий надёжности.
FIXME: Поведение pg_minsize может быть изменено в будущем с полной деактивации FIXME: Поведение pg_minsize может быть изменено в будущем с полной деактивации
PG на перевод их в режим только для чтения. PG на перевод их в режим только для чтения.
@ -200,8 +168,8 @@ PG на перевод их в режим только для чтения.
Число PG для данного пула. Число должно быть достаточно большим, чтобы монитор Число PG для данного пула. Число должно быть достаточно большим, чтобы монитор
мог равномерно распределить по ним данные. мог равномерно распределить по ним данные.
Обычно это означает примерно 10-100 PG на 1 OSD, т.е. pg_count можно устанавливать Обычно это означает примерно 64-128 PG на 1 OSD, т.е. pg_count можно устанавливать
равным (общему числу OSD * 10 / pg_size). Значение можно округлить до ближайшей равным (общему числу OSD * 100 / pg_size). Значение можно округлить до ближайшей
степени 2, чтобы потом было легче уменьшать или увеличивать число PG, умножая степени 2, чтобы потом было легче уменьшать или увеличивать число PG, умножая
или деля его на 2. или деля его на 2.
@ -222,71 +190,6 @@ PG в Vitastor эферемерны, то есть вы можете менят
Иными словами, домен отказа - это то, от отказа чего вы защищаете себя избыточным Иными словами, домен отказа - это то, от отказа чего вы защищаете себя избыточным
хранением. хранением.
## level_placement
- Тип: строка
Правила дополнительных доменов отказа, применяемые вместе с failure_domain.
Должны задаваться в следующем виде:
`<уровень>=<последовательность символов>, <уровень2>=<последовательность2>, ...`
Каждая `<последовательность>` должна состоять ровно из [pg_size](#pg_size) символов.
Каждый символ соответствует одному OSD (размещению одной части PG) этого пула.
Одинаковые символы означают, что соответствующие части размещаются в один и тот же
узел дерева OSD на заданном `<уровне>`. Разные символы означают, что части
размещаются в разные узлы.
Например, если вы хотите сделать пул EC 4+2 и хотите поместить каждые 2 части
данных в свой датацентр, и также вы хотите, чтобы каждая часть размещалась на
другом хосте, то вы должны задать `level_placement` равным `dc=112233 host=123456`.
Либо вы просто можете задать `level_placement` равным `dc=112233` и оставить
`failure_domain` пустым, т.к. `host` это его значение по умолчанию и оно также
применится автоматически.
Без этого правила может получиться так, что в одном из датацентров окажется
3 части данных одной PG и данные окажутся недоступными при временном отключении
этого датацентра.
Естественно, перед установкой правила вам нужно сгруппировать ваши хосты в
датацентры, установив [placement_levels](monitor.ru.md#placement_levels) во что-то
типа `{"dc":90,"host":100,"osd":110}` и добавив датацентры в [node_placement](#дерево-размещения),
примерно так: `{"dc1":{"level":"dc"},"host1":{"parent":"dc1"},...}`.
## raw_placement
- Type: string
Низкоуровневые правила генерации PG в форме DSL (доменно-специфичного языка).
Используйте, только если действительно знаете, зачем вам это надо :)
Спецификация DSL:
```
dsl := item | item ("\n" | ",") items
item := "any" | rules
rules := rule | rule rules
rule := level operator arg
level := /\w+/
operator := "!=" | "=" | ">" | "?="
arg := value | "(" values ")"
values := value | value "," values
value := item_ref | constant_id
item_ref := /\d+/
constant_id := /"([^"]+)"/
```
Оператор "?=" означает "предпочитаемый". Т.е. `dc ?= "meow"` означает "предпочитать
датацентр meow для этой части данных, но разместить её в другом датацентре, если
meow недоступен".
Примеры:
- Простые 3 реплики с failure_domain=host: `any, host!=1, host!=(1,2)`
- EC 4+2 в 3 датацентрах: `any, dc=1 host!=1, dc!=1, dc=3 host!=3, dc!=(1,3), dc=5 host!=5`
- 1 копия в фиксированном ДЦ + 2 в других ДЦ: `dc?=meow, dc!=1, dc!=(1,2)`
## max_osd_combinations ## max_osd_combinations
- Тип: целое число - Тип: целое число
@ -305,9 +208,8 @@ meow недоступен".
Размер блока для данного пула. Если не задан, используется значение из Размер блока для данного пула. Если не задан, используется значение из
/vitastor/config/global. Если в вашем кластере есть OSD с разными размерами /vitastor/config/global. Если в вашем кластере есть OSD с разными размерами
блока, пул будет использовать только OSD с размером блока, равным размеру блока блока, пул должен быть ограничен только OSD, блок которых равен блоку пула,
пула. Если вы хотите сильнее ограничить набор используемых для пула OSD - с помощью [osd_tags](#osd_tags).
используйте [osd_tags](#osd_tags).
О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#block_size). О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#block_size).
@ -317,8 +219,9 @@ meow недоступен".
- По умолчанию: 4096 - По умолчанию: 4096
Размер "сектора" виртуальных дисков в данном пуле. Если не задан, используется Размер "сектора" виртуальных дисков в данном пуле. Если не задан, используется
значение из /vitastor/config/global. Аналогично block_size, каждый пул будет значение из /vitastor/config/global. Аналогично block_size, пул должен быть
использовать только OSD с совпадающей с пулом настройкой bitmap_granularity. ограничен OSD со значением bitmap_granularity, равным значению пула, с помощью
[osd_tags](#osd_tags).
О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#bitmap_granularity). О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#bitmap_granularity).
@ -328,13 +231,11 @@ meow недоступен".
- По умолчанию: none - По умолчанию: none
Настройка мгновенного коммита для данного пула. Если не задана, используется Настройка мгновенного коммита для данного пула. Если не задана, используется
значение из /vitastor/config/global. Аналогично block_size, каждый пул будет значение из /vitastor/config/global. Аналогично block_size, пул должен быть
использовать только OSD с *совместимыми* настройками immediate_commit. ограничен OSD со значением bitmap_granularity, совместимым со значением пула, с
"Совместимыми" означает, что пул с отключенным мгновенным коммитом будет помощью [osd_tags](#osd_tags). Совместимость означает, что пул с отключенным
использовать OSD с включённым мгновенным коммитом, но не наоборот. То есть, мгновенным коммитом может работать на OSD с включённым мгновенным коммитом, но
пул со значением "none" будет использовать все OSD, пул со "small" будет не наоборот.
использовать OSD с "all" или "small", а пул с "all" будет использовать только
OSD с "all".
О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#immediate_commit). О самом параметре читайте в разделе [Дисковые параметры уровня кластера](layout-cluster.ru.md#immediate_commit).
@ -383,27 +284,6 @@ OSD с "all".
Интервал скраба, то есть, автоматической фоновой проверки данных для данного пула. Интервал скраба, то есть, автоматической фоновой проверки данных для данного пула.
Переопределяет [глобальную настройку scrub_interval](osd.ru.md#scrub_interval). Переопределяет [глобальную настройку scrub_interval](osd.ru.md#scrub_interval).
## used_for_fs
- Type: string
Если непусто, пул помечается как используемый для файловой системы VitastorFS с
метаданными, хранимыми в блочном образе Vitastor с именем, равным значению
этого параметра.
Когда пул помечается как используемый для VitastorFS, создание обычных блочных
образов в нём отключается (vitastor-cli отказывается создавать образы без --force),
чтобы защитить пользователя от коллизий ID файлов и блочных образов и, таким
образом, от потери данных.
[vitastor-nfs](../usage/nfs.ru.md), в свою очередь, при запуске отказывается
использовать для ФС пулы, не выделенные для неё. Это также означает, что один
пул может использоваться только для одной VitastorFS.
Также для ФС-пулов отключается передача статистики в etcd по отдельным инодам,
так как ФС-пул может содержать очень много файлов и статистика по ним всем
заняла бы очень много места в etcd.
# Примеры # Примеры
## Реплицированный пул ## Реплицированный пул

View File

@ -1,4 +0,0 @@
# Client Parameters
These parameters apply only to Vitastor clients (QEMU, fio, NBD and so on) and
affect their interaction with the cluster.

View File

@ -1,4 +0,0 @@
# Параметры клиентского кода
Данные параметры применяются только к клиентам Vitastor (QEMU, fio, NBD и т.п.) и
затрагивают логику их работы с кластером.

View File

@ -1,255 +0,0 @@
- name: client_iothread_count
type: int
default: 0
online: false
info: |
Number of separate threads for handling TCP network I/O at client library
side. Enabling 4 threads usually allows to increase peak performance of each
client from approx. 2-3 to 7-8 GByte/s linear read/write and from approx.
100-150 to 400 thousand iops, but at the same time it increases latency.
Latency increase depends on CPU: with CPU power saving disabled latency
only increases by ~10 us (equivalent to Q=1 iops decrease from 10500 to 9500),
with CPU power saving enabled it may be as high as 500 us (equivalent to Q=1
iops decrease from 2000 to 1000). RDMA isn't affected by this option.
It's recommended to enable client I/O threads if you don't use RDMA and want
to increase peak client performance.
info_ru: |
Число отдельных потоков для обработки ввода-вывода через TCP сеть на стороне
клиентской библиотеки. Включение 4 потоков обычно позволяет поднять пиковую
производительность каждого клиента примерно с 2-3 до 7-8 Гбайт/с линейного
чтения/записи и примерно с 100-150 до 400 тысяч операций ввода-вывода в
секунду, но ухудшает задержку. Увеличение задержки зависит от процессора:
при отключённом энергосбережении CPU это всего ~10 микросекунд (равносильно
падению iops с Q=1 с 10500 до 9500), а при включённом это может быть
и 500 микросекунд (равносильно падению iops с Q=1 с 2000 до 1000). На работу
RDMA данная опция не влияет.
Рекомендуется включать клиентские потоки ввода-вывода, если вы не используете
RDMA и хотите повысить пиковую производительность клиентов.
- name: client_retry_interval
type: ms
min: 10
default: 50
online: true
info: |
Retry time for I/O requests failed due to inactive PGs or network
connectivity errors.
info_ru: |
Время повтора запросов ввода-вывода, неудачных из-за неактивных PG или
ошибок сети.
- name: client_eio_retry_interval
type: ms
default: 1000
online: true
info: |
Retry time for I/O requests failed due to data corruption or unfinished
EC object deletions (has_incomplete PG state). 0 disables such retries
and clients are not blocked and just get EIO error code instead.
info_ru: |
Время повтора запросов ввода-вывода, неудачных из-за повреждения данных
или незавершённых удалений EC-объектов (состояния PG has_incomplete).
0 отключает повторы таких запросов и клиенты не блокируются, а вместо
этого просто получают код ошибки EIO.
- name: client_retry_enospc
type: bool
default: true
online: true
info: |
Retry writes on out of space errors to wait until some space is freed on
OSDs.
info_ru: |
Повторять запросы записи, завершившиеся с ошибками нехватки места, т.е.
ожидать, пока на OSD не освободится место.
- name: client_max_dirty_bytes
type: int
default: 33554432
online: true
info: |
Without [immediate_commit](layout-cluster.en.md#immediate_commit)=all this parameter sets the limit of "dirty"
(not committed by fsync) data allowed by the client before forcing an
additional fsync and committing the data. Also note that the client always
holds a copy of uncommitted data in memory so this setting also affects
RAM usage of clients.
info_ru: |
При работе без [immediate_commit](layout-cluster.ru.md#immediate_commit)=all - это лимит объёма "грязных" (не
зафиксированных fsync-ом) данных, при достижении которого клиент будет
принудительно вызывать fsync и фиксировать данные. Также стоит иметь в виду,
что в этом случае до момента fsync клиент хранит копию незафиксированных
данных в памяти, то есть, настройка влияет на потребление памяти клиентами.
- name: client_max_dirty_ops
type: int
default: 1024
online: true
info: |
Same as client_max_dirty_bytes, but instead of total size, limits the number
of uncommitted write operations.
info_ru: |
Аналогично client_max_dirty_bytes, но ограничивает количество
незафиксированных операций записи вместо их общего объёма.
- name: client_enable_writeback
type: bool
default: false
online: true
info: |
This parameter enables client-side write buffering. This means that write
requests are accumulated in memory for a short time before being sent to
a Vitastor cluster which allows to send them in parallel and increase
performance of some applications. Writes are buffered until client forces
a flush with fsync() or until the amount of buffered writes exceeds the
limit.
Write buffering significantly increases performance of some applications,
for example, CrystalDiskMark under Windows (LOL :-D), but also any other
applications if they do writes in one of two non-optimal ways: either if
they do a lot of small (4 kb or so) sequential writes, or if they do a lot
of small random writes, but without any parallelism or asynchrony, and also
without calling fsync().
With write buffering enabled, you can expect around 22000 T1Q1 random write
iops in QEMU more or less regardless of the quality of your SSDs, and this
number is in fact bound by QEMU itself rather than Vitastor (check it
yourself by adding a "driver=null-co" disk in QEMU). Without write
buffering, the current record is 9900 iops, but the number is usually
even lower with non-ideal hardware, for example, it may be 5000 iops.
Even when this parameter is enabled, write buffering isn't enabled until
the client explicitly allows it, because enabling it without the client
being aware of the fact that his writes may be buffered may lead to data
loss. Because of this, older versions of clients don't support write
buffering at all, newer versions of the QEMU driver allow write buffering
only if it's enabled in disk settings with `-blockdev cache.direct=false`,
and newer versions of FIO only allow write buffering if you don't specify
`-direct=1`. NBD and NFS drivers allow write buffering by default.
You can overcome this restriction too with the `client_writeback_allowed`
parameter, but you shouldn't do that unless you **really** know what you
are doing.
info_ru: |
Данный параметр разрешает включать буферизацию записи в памяти. Буферизация
означает, что операции записи отправляются на кластер Vitastor не сразу, а
могут небольшое время накапливаться в памяти и сбрасываться сразу пакетами,
до тех пор, пока либо не будет превышен лимит неотправленных записей, либо
пока клиент не вызовет fsync.
Буферизация значительно повышает производительность некоторых приложений,
например, CrystalDiskMark в Windows (ха-ха :-D), но также и любых других,
которые пишут на диск неоптимально: либо последовательно, но мелкими блоками
(например, по 4 кб), либо случайно, но без параллелизма и без fsync - то
есть, например, отправляя 128 операций записи в разные места диска, но не
все сразу с помощью асинхронного I/O, а по одной.
В QEMU с буферизацией записи можно ожидать показателя примерно 22000
операций случайной записи в секунду в 1 поток и с глубиной очереди 1 (T1Q1)
без fsync, почти вне зависимости от того, насколько хороши ваши диски - эта
цифра упирается в сам QEMU. Без буферизации рекорд пока что - 9900 операций
в секунду, но на железе похуже может быть и поменьше, например, 5000 операций
в секунду.
При этом, даже если данный параметр включён, буферизация не включается, если
явно не разрешена клиентом, т.к. если клиент не знает, что запросы записи
буферизуются, это может приводить к потере данных. Поэтому в старых версиях
клиентских драйверов буферизация записи не включается вообще, в новых
версиях QEMU-драйвера включается, только если разрешена опцией диска
`-blockdev cache.direct=false`, а в fio - только если нет опции `-direct=1`.
В NBD и NFS драйверах буферизация записи разрешена по умолчанию.
Можно обойти и это ограничение с помощью параметра `client_writeback_allowed`,
но делать так не надо, если только вы не уверены в том, что делаете, на все
100%. :-)
- name: client_max_buffered_bytes
type: int
default: 33554432
online: true
info: |
Maximum total size of buffered writes which triggers write-back when reached.
info_ru: |
Максимальный общий размер буферизованных записей, при достижении которого
начинается процесс сброса данных на сервер.
- name: client_max_buffered_ops
type: int
default: 1024
online: true
info: |
Maximum number of buffered writes which triggers write-back when reached.
Multiple consecutive modified data regions are counted as 1 write here.
info_ru: |
Максимальное количество буферизованных записей, при достижении которого
начинается процесс сброса данных на сервер. При этом несколько
последовательных изменённых областей здесь считаются 1 записью.
- name: client_max_writeback_iodepth
type: int
default: 256
online: true
info: |
Maximum number of parallel writes when flushing buffered data to the server.
info_ru: |
Максимальное число параллельных операций записи при сбросе буферов на сервер.
- name: nbd_timeout
type: sec
default: 300
online: false
info: |
Timeout for I/O operations for [NBD](../usage/nbd.en.md). If an operation
executes for longer than this timeout, including when your cluster is just
temporarily down for more than timeout, the NBD device will detach by itself
(and possibly break the mounted file system).
You can set timeout to 0 to never detach, but in that case you won't be
able to remove the kernel device at all if the NBD process dies - you'll have
to reboot the host.
info_ru: |
Таймаут для операций чтения/записи через [NBD](../usage/nbd.ru.md). Если
операция выполняется дольше таймаута, включая временную недоступность
кластера на время, большее таймаута, NBD-устройство отключится само собой
(и, возможно, сломает примонтированную ФС).
Вы можете установить таймаут в 0, чтобы никогда не отключать устройство по
таймауту, но в этом случае вы вообще не сможете удалить устройство, если
процесс NBD умрёт - вам придётся перезагружать сервер.
- name: nbd_max_devices
type: int
default: 64
online: false
info: |
Maximum number of NBD devices in the system. This value is passed as
`nbds_max` parameter for the nbd kernel module when vitastor-nbd autoloads it.
info_ru: |
Максимальное число NBD-устройств в системе. Данное значение передаётся
модулю ядра nbd как параметр `nbds_max`, когда его загружает vitastor-nbd.
- name: nbd_max_part
type: int
default: 3
online: false
info: |
Maximum number of partitions per NBD device. This value is passed as
`max_part` parameter for the nbd kernel module when vitastor-nbd autoloads it.
Note that (nbds_max)*(1+max_part) usually can't exceed 256.
info_ru: |
Максимальное число разделов на одном NBD-устройстве. Данное значение передаётся
модулю ядра nbd как параметр `max_part`, когда его загружает vitastor-nbd.
Имейте в виду, что (nbds_max)*(1+max_part) обычно не может превышать 256.
- name: osd_nearfull_ratio
type: float
default: 0.95
online: true
info: |
Ratio of used space on OSD to treat it as "almost full" in vitastor-cli status output.
Remember that some client writes may hang or complete with an error if even
just one OSD becomes 100 % full!
However, unlike in Ceph, 100 % full Vitastor OSDs don't crash (in Ceph they're
unable to start at all), so you'll be able to recover from "out of space" errors
without destroying and recreating OSDs.
info_ru: |
Доля занятого места на OSD, начиная с которой он считается "почти заполненным" в
выводе vitastor-cli status.
Помните, что часть клиентских запросов может зависнуть или завершиться с ошибкой,
если на 100 % заполнится хотя бы 1 OSD!
Однако, в отличие от Ceph, заполненные на 100 % OSD Vitastor не падают (в Ceph
заполненные на 100% OSD вообще не могут стартовать), так что вы сможете
восстановить работу кластера после ошибок отсутствия свободного места
без уничтожения и пересоздания OSD.

View File

@ -28,8 +28,6 @@
{{../../config/network.en.md|indent=2}} {{../../config/network.en.md|indent=2}}
{{../../config/client.en.md|indent=2}}
{{../../config/layout-cluster.en.md|indent=2}} {{../../config/layout-cluster.en.md|indent=2}}
{{../../config/layout-osd.en.md|indent=2}} {{../../config/layout-osd.en.md|indent=2}}
@ -56,8 +54,6 @@
{{../../usage/nfs.en.md}} {{../../usage/nfs.en.md}}
{{../../usage/admin.en.md}}
## Performance ## Performance
{{../../performance/understanding.en.md}} {{../../performance/understanding.en.md}}
@ -66,6 +62,4 @@
{{../../performance/comparison1.en.md}} {{../../performance/comparison1.en.md}}
{{../../performance/bench2.en.md}}
{{../../intro/author.en.md|indent=1}} {{../../intro/author.en.md|indent=1}}

View File

@ -28,8 +28,6 @@
{{../../config/network.ru.md|indent=2}} {{../../config/network.ru.md|indent=2}}
{{../../config/client.ru.md|indent=2}}
{{../../config/layout-cluster.ru.md|indent=2}} {{../../config/layout-cluster.ru.md|indent=2}}
{{../../config/layout-osd.ru.md|indent=2}} {{../../config/layout-osd.ru.md|indent=2}}
@ -56,8 +54,6 @@
{{../../usage/nfs.ru.md}} {{../../usage/nfs.ru.md}}
{{../../usage/admin.ru.md}}
## Производительность ## Производительность
{{../../performance/understanding.ru.md}} {{../../performance/understanding.ru.md}}
@ -66,6 +62,4 @@
{{../../performance/comparison1.ru.md}} {{../../performance/comparison1.ru.md}}
{{../../performance/bench2.ru.md}}
{{../../intro/author.ru.md|indent=1}} {{../../intro/author.ru.md|indent=1}}

View File

@ -7,27 +7,26 @@
in Vitastor, affects memory usage, write amplification and I/O load in Vitastor, affects memory usage, write amplification and I/O load
distribution effectiveness. distribution effectiveness.
Recommended default block size is 128 KB for SSD and 1 MB for HDD. In fact, Recommended default block size is 128 KB for SSD and 4 MB for HDD. In fact,
it's possible to use 1 MB for SSD too - it will lower memory usage, but it's possible to use 4 MB for SSD too - it will lower memory usage, but
may increase average WA and reduce linear performance. may increase average WA and reduce linear performance.
OSD memory usage is roughly (SIZE / BLOCK * 68 bytes) which is roughly OSD memory usage is roughly (SIZE / BLOCK * 68 bytes) which is roughly
544 MB per 1 TB of used disk space with the default 128 KB block size. 544 MB per 1 TB of used disk space with the default 128 KB block size.
With 1 MB it's 8 times lower.
info_ru: | info_ru: |
Размер объектов (блоков данных), на которые делятся физические и виртуальные Размер объектов (блоков данных), на которые делятся физические и виртуальные
диски в Vitastor (в рамках каждого пула). Одна из ключевых на данный момент диски в Vitastor (в рамках каждого пула). Одна из ключевых на данный момент
настроек, влияет на потребление памяти, объём избыточной записи (write настроек, влияет на потребление памяти, объём избыточной записи (write
amplification) и эффективность распределения нагрузки по OSD. amplification) и эффективность распределения нагрузки по OSD.
Рекомендуемые по умолчанию размеры блока - 128 килобайт для SSD и 1 мегабайт Рекомендуемые по умолчанию размеры блока - 128 килобайт для SSD и 4
для HDD. В принципе, для SSD можно тоже использовать блок размером 1 мегабайт, мегабайта для HDD. В принципе, для SSD можно тоже использовать 4 мегабайта,
это понизит использование памяти, но ухудшит распределение нагрузки и в это понизит использование памяти, но ухудшит распределение нагрузки и в
среднем увеличит WA. среднем увеличит WA.
Потребление памяти OSD составляет примерно (РАЗМЕР / БЛОК * 68 байт), Потребление памяти OSD составляет примерно (РАЗМЕР / БЛОК * 68 байт),
т.е. примерно 544 МБ памяти на 1 ТБ занятого места на диске при т.е. примерно 544 МБ памяти на 1 ТБ занятого места на диске при
стандартном 128 КБ блоке. При 1 МБ блоке памяти нужно в 8 раз меньше. стандартном 128 КБ блоке.
- name: bitmap_granularity - name: bitmap_granularity
type: int type: int
default: 4096 default: 4096
@ -47,24 +46,14 @@
Не может быть меньше размера сектора дисков данных OSD. Не может быть меньше размера сектора дисков данных OSD.
- name: immediate_commit - name: immediate_commit
type: string type: string
default: all default: false
info: | info: |
One of "none", "all" or "small". Global value, may be overriden [at pool level](pool.en.md#immediate_commit). Another parameter which is really important for performance.
This parameter is also really important for performance.
TLDR: default "all" is optimal for server-grade SSDs with supercapacitor-based
power loss protection (nonvolatile write-through cache) and also for most HDDs.
"none" or "small" should be only selected if you use desktop SSDs without
capacitors or drives with slow write-back cache that can't be disabled. Check
immediate_commit of your OSDs in [ls-osd](../usage/cli.en.md#ls-osd).
Detailed explanation:
Desktop SSDs are very fast (100000+ iops) for simple random writes Desktop SSDs are very fast (100000+ iops) for simple random writes
without cache flush. However, they are really slow (only around 1000 iops) without cache flush. However, they are really slow (only around 1000 iops)
if you try to fsync() each write, that is, if you want to guarantee that if you try to fsync() each write, that is, when you want to guarantee that
each change gets actually persisted to the physical media. each change gets immediately persisted to the physical media.
Server-grade SSDs with "Advanced/Enhanced Power Loss Protection" or with Server-grade SSDs with "Advanced/Enhanced Power Loss Protection" or with
"Supercapacitor-based Power Loss Protection", on the other hand, are equally "Supercapacitor-based Power Loss Protection", on the other hand, are equally
@ -76,8 +65,8 @@
efficiently utilize desktop SSDs by postponing fsync until the client calls efficiently utilize desktop SSDs by postponing fsync until the client calls
it explicitly. it explicitly.
This is what this parameter regulates. When it's set to "all" Vitastor This is what this parameter regulates. When it's set to "all" the whole
cluster commits each change to disks immediately and clients just Vitastor cluster commits each change to disks immediately and clients just
ignore fsyncs because they know for sure that they're unneeded. This reduces ignore fsyncs because they know for sure that they're unneeded. This reduces
the amount of network roundtrips performed by clients and improves the amount of network roundtrips performed by clients and improves
performance. So it's always better to use server grade SSDs with performance. So it's always better to use server grade SSDs with
@ -97,22 +86,16 @@
it (they have internal SSD cache even though it's not stated in datasheets). it (they have internal SSD cache even though it's not stated in datasheets).
Setting this parameter to "all" or "small" in OSD parameters requires enabling Setting this parameter to "all" or "small" in OSD parameters requires enabling
[disable_journal_fsync](layout-osd.en.md#disable_journal_fsync) and disable_journal_fsync and disable_meta_fsync, setting it to "all" also requires
[disable_meta_fsync](layout-osd.en.md#disable_meta_fsync), setting it to enabling disable_data_fsync.
"all" also requires enabling [disable_data_fsync](layout-osd.en.md#disable_data_fsync).
vitastor-disk tried to do that by default, first checking/disabling drive cache. TLDR: For optimal performance, set immediate_commit to "all" if you only use
If it can't disable drive cache, OSD get initialized with "none". SSDs with supercapacitor-based power loss protection (nonvolatile
write-through cache) for both data and journals in the whole Vitastor
cluster. Set it to "small" if you only use such SSDs for journals. Leave
empty if your drives have write-back cache.
info_ru: | info_ru: |
Одно из значений "none", "small" или "all". Глобальное значение, может быть Ещё один важный для производительности параметр.
переопределено [на уровне пула](pool.ru.md#immediate_commit).
Данный параметр тоже важен для производительности.
Вкратце: значение по умолчанию "all" оптимально для всех серверных SSD с
суперконденсаторами и также для большинства HDD. "none" и "small" имеет смысл
устанавливать только при использовании SSD настольного класса без
суперконденсаторов или дисков с медленным неотключаемым кэшем записи.
Проверьте настройку immediate_commit своих OSD в выводе команды [ls-osd](../usage/cli.ru.md#ls-osd).
Модели SSD для настольных компьютеров очень быстрые (100000+ операций в Модели SSD для настольных компьютеров очень быстрые (100000+ операций в
секунду) при простой случайной записи без сбросов кэша. Однако они очень секунду) при простой случайной записи без сбросов кэша. Однако они очень
@ -133,7 +116,7 @@
эффективно утилизировать настольные SSD. эффективно утилизировать настольные SSD.
Данный параметр влияет как раз на это. Когда он установлен в значение "all", Данный параметр влияет как раз на это. Когда он установлен в значение "all",
кластер Vitastor мгновенно фиксирует каждое изменение на физические весь кластер Vitastor мгновенно фиксирует каждое изменение на физические
носители и клиенты могут просто игнорировать запросы fsync, т.к. они точно носители и клиенты могут просто игнорировать запросы fsync, т.к. они точно
знают, что fsync-и не нужны. Это уменьшает число необходимых обращений к OSD знают, что fsync-и не нужны. Это уменьшает число необходимых обращений к OSD
по сети и улучшает производительность. Поэтому даже с Vitastor лучше всегда по сети и улучшает производительность. Поэтому даже с Vitastor лучше всегда
@ -156,6 +139,12 @@
указано в спецификациях). указано в спецификациях).
Указание "all" или "small" в настройках / командной строке OSD требует Указание "all" или "small" в настройках / командной строке OSD требует
включения [disable_journal_fsync](layout-osd.ru.md#disable_journal_fsync) и включения disable_journal_fsync и disable_meta_fsync, значение "all" также
[disable_meta_fsync](layout-osd.ru.md#disable_meta_fsync), значение "all" требует включения disable_data_fsync.
также требует включения [disable_data_fsync](layout-osd.ru.md#disable_data_fsync).
Итого, вкратце: для оптимальной производительности установите
immediate_commit в значение "all", если вы используете в кластере только SSD
с суперконденсаторами и для данных, и для журналов. Если вы используете
такие SSD для всех журналов, но не для данных - можете установить параметр
в "small". Если и какие-то из дисков журналов имеют волатильный кэш записи -
оставьте параметр пустым.

View File

@ -110,22 +110,20 @@
type: bool type: bool
default: false default: false
info: | info: |
Do not issue fsyncs to the data device, i.e. do not force it to flush cache. Do not issue fsyncs to the data device, i.e. do not flush its cache.
Safe ONLY if your data device has write-through cache or if write-back Safe ONLY if your data device has write-through cache. If you disable
cache is disabled. If you disable drive cache manually with `hdparm` or the cache yourself using `hdparm` or `scsi_disk/cache_type` then make sure
writing to `/sys/.../scsi_disk/cache_type` then make sure that you do it that the cache disable command is run every time before starting Vitastor
every time before starting Vitastor OSD (vitastor-disk does it automatically). OSD, for example, in the systemd unit. See also `immediate_commit` option
See also [immediate_commit](layout-cluster.en.md#immediate_commit) for the instructions to disable cache and how to benefit from it.
for information about how to benefit from disabled cache.
info_ru: | info_ru: |
Не отправлять fsync-и устройству данных, т.е. не заставлять его сбрасывать кэш. Не отправлять fsync-и устройству данных, т.е. не сбрасывать его кэш.
Безопасно, ТОЛЬКО если ваше устройство данных имеет кэш со сквозной Безопасно, ТОЛЬКО если ваше устройство данных имеет кэш со сквозной
записью (write-through) или если кэш с отложенной записью (write-back) отключён. записью (write-through). Если вы отключаете кэш через `hdparm` или
Если вы отключаете кэш вручную через `hdparm` или запись в `/sys/.../scsi_disk/cache_type`, `scsi_disk/cache_type`, то удостоверьтесь, что команда отключения кэша
то удостоверьтесь, что вы делаете это каждый раз перед запуском Vitastor OSD выполняется перед каждым запуском Vitastor OSD, например, в systemd unit-е.
(vitastor-disk делает это автоматически). Смотрите также опцию Смотрите также опцию `immediate_commit` для инструкций по отключению кэша
[immediate_commit](layout-cluster.ru.md#immediate_commit) для информации о том, и о том, как из этого извлечь выгоду.
как извлечь выгоду из отключённого кэша.
- name: disable_meta_fsync - name: disable_meta_fsync
type: bool type: bool
default: false default: false
@ -181,7 +179,8 @@
Because of this it can actually be beneficial to use SSDs which work well Because of this it can actually be beneficial to use SSDs which work well
with 512 byte sectors and use 512 byte disk_alignment, journal_block_size with 512 byte sectors and use 512 byte disk_alignment, journal_block_size
and meta_block_size. But at the moment, no such SSDs are known... and meta_block_size. But the only SSD that may fit into this category is
Intel Optane (probably, not tested yet).
Clients don't need to be aware of disk_alignment, so it's not required to Clients don't need to be aware of disk_alignment, so it's not required to
put a modified value into etcd key /vitastor/config/global. put a modified value into etcd key /vitastor/config/global.
@ -199,78 +198,9 @@
Поэтому, на самом деле, может быть выгодно найти SSD, хорошо работающие с Поэтому, на самом деле, может быть выгодно найти SSD, хорошо работающие с
меньшими, 512-байтными, блоками и использовать 512-байтные disk_alignment, меньшими, 512-байтными, блоками и использовать 512-байтные disk_alignment,
journal_block_size и meta_block_size. Однако на данный момент такие SSD journal_block_size и meta_block_size. Однако единственные SSD, которые
не известны... теоретически могут попасть в эту категорию - это Intel Optane (но и это
пока не проверялось автором).
Клиентам не обязательно знать про disk_alignment, так что помещать значение Клиентам не обязательно знать про disk_alignment, так что помещать значение
этого параметра в etcd в /vitastor/config/global не нужно. этого параметра в etcd в /vitastor/config/global не нужно.
- name: data_csum_type
type: string
default: none
info: |
Data checksum type to use. May be "crc32c" or "none". Set to "crc32c" to
enable data checksums.
info_ru: |
Тип используемых OSD контрольных сумм данных. Может быть "crc32c" или "none".
Установите в "crc32c", чтобы включить расчёт и проверку контрольных сумм данных.
Следует понимать, что контрольные суммы в зависимости от размера блока их
расчёта либо увеличивают потребление памяти, либо снижают производительность.
Подробнее смотрите в описании параметра [csum_block_size](#csum_block_size).
- name: csum_block_size
type: int
default: 4096
info: |
Checksum calculation block size.
Must be equal or a multiple of [bitmap_granularity](layout-cluster.en.md#bitmap_granularity)
(which is usually 4 KB).
Checksums increase metadata size by 4 bytes per each csum_block_size of data.
Checksums are always a tradeoff:
1. You either sacrifice +1 GB RAM per 1 TB of data
2. Or you raise csum_block_size, for example, to 32k and sacrifice
50% random write iops due to checksum read-modify-write
3. Or you turn off [inmemory_metadata](osd.en.md#inmemory_metadata) and
sacrifice 50% random read iops due to checksum reads
All-flash clusters usually have enough RAM to use default csum_block_size,
which uses 1 GB RAM per 1 TB of data. HDD clusters usually don't.
Thus, recommended setups are:
1. All-flash, 1 GB RAM per 1 TB data: default (csum_block_size=4k)
2. All-flash, less RAM: csum_block_size=4k + inmemory_metadata=false
3. Hybrid HDD+SSD: csum_block_size=4k + inmemory_metadata=false
4. HDD-only, faster random read: csum_block_size=32k
5. HDD-only, faster random write: csum_block_size=4k +
inmemory_metadata=false + meta_io=cached
See also [meta_io](osd.en.md#meta_io).
info_ru: |
Размер блока расчёта контрольных сумм.
Должен быть равен или кратен [bitmap_granularity](layout-cluster.ru.md#bitmap_granularity)
(который обычно равен 4 КБ).
Контрольные суммы увеличивают размер метаданных на 4 байта на каждые
csum_block_size данных.
Контрольные суммы - это всегда компромисс:
1. Вы либо жертвуете потреблением +1 ГБ памяти на 1 ТБ дискового пространства
2. Либо вы повышаете csum_block_size до, скажем, 32k и жертвуете 50%
скорости случайной записи из-за цикла чтения-изменения-записи для расчёта
новых контрольных сумм
3. Либо вы отключаете [inmemory_metadata](osd.ru.md#inmemory_metadata) и
жертвуете 50% скорости случайного чтения из-за чтения контрольных сумм
с диска
Таким образом, рекомендуются следующие варианты настроек:
1. All-flash, 1 ГБ памяти на 1 ТБ данных: по умолчанию (csum_block_size=4k)
2. All-flash, меньше памяти: csum_block_size=4k + inmemory_metadata=false
3. Гибридные HDD+SSD: csum_block_size=4k + inmemory_metadata=false
4. Только HDD, быстрее случайное чтение: csum_block_size=32k
5. Только HDD, быстрее случайная запись: csum_block_size=4k +
inmemory_metadata=false + meta_io=cached
Смотрите также [meta_io](osd.ru.md#meta_io).

View File

@ -38,7 +38,6 @@ const types = {
bool: 'boolean', bool: 'boolean',
int: 'integer', int: 'integer',
sec: 'seconds', sec: 'seconds',
float: 'number',
ms: 'milliseconds', ms: 'milliseconds',
us: 'microseconds', us: 'microseconds',
}, },
@ -47,7 +46,6 @@ const types = {
bool: 'булево (да/нет)', bool: 'булево (да/нет)',
int: 'целое число', int: 'целое число',
sec: 'секунды', sec: 'секунды',
float: 'число',
ms: 'миллисекунды', ms: 'миллисекунды',
us: 'микросекунды', us: 'микросекунды',
}, },

View File

@ -1,107 +1,7 @@
- name: use_antietcd
type: bool
default: false
info: |
Enable experimental built-in etcd replacement (clustered key-value database):
[antietcd](https://git.yourcmc.ru/vitalif/antietcd/).
When set to true, monitor runs internal antietcd automatically if it finds
a network interface with an IP address matching one of addresses in the
`etcd_address` configuration option (in `/etc/vitastor/vitastor.conf` or in
the monitor command line). If there are multiple matching addresses, it also
checks `antietcd_port` and antietcd is started for address with matching port.
By default, antietcd accepts connection on the selected IP address, but it
can also be overridden manually in the `antietcd_ip` option.
When antietcd is started, monitor stores cluster metadata itself and exposes
a etcd-compatible REST API. On disk, these metadata are stored in
`/var/lib/vitastor/mon_2379.json.gz` (can be overridden in antietcd_data_file
or antietcd_data_dir options). All other antietcd parameters
(see [here](https://git.yourcmc.ru/vitalif/antietcd/)) except node_id,
cluster, cluster_key, persist_filter, stale_read can also be set in
Vitastor configuration with `antietcd_` prefix.
You can dump/load data to or from antietcd using Antietcd `anticli` tool:
```
npm exec anticli -e http://etcd:2379/v3 get --prefix '' --no-temp > dump.json
npm exec anticli -e http://antietcd:2379/v3 load < dump.json
```
info_ru: |
Включить экспериментальный встроенный заменитель etcd (кластерную БД ключ-значение):
[antietcd](https://git.yourcmc.ru/vitalif/antietcd/).
Если параметр установлен в true, монитор запускает antietcd автоматически,
если обнаруживает сетевой интерфейс с одним из адресов, указанных в опции
конфигурации `etcd_address` (в `/etc/vitastor/vitastor.conf` или в опциях
командной строки монитора). Если таких адресов несколько, также проверяется
опция `antietcd_port` и antietcd запускается для адреса с соответствующим
портом. По умолчанию antietcd принимает подключения по выбранному совпадающему
IP, но его также можно определить вручную опцией `antietcd_ip`.
При запуске antietcd монитор сам хранит центральные метаданные кластера и
выставляет etcd-совместимое REST API. На диске эти метаданные хранятся в файле
`/var/lib/vitastor/mon_2379.json.gz` (можно переопределить параметрами
antietcd_data_file или antietcd_data_dir). Все остальные параметры antietcd
(смотрите [по ссылке](https://git.yourcmc.ru/vitalif/antietcd/)), за исключением
node_id, cluster, cluster_key, persist_filter, stale_read также можно задавать
в конфигурации Vitastor с префиксом `antietcd_`.
Вы можете выгружать/загружать данные в или из antietcd с помощью его инструмента
`anticli`:
```
npm exec anticli -e http://etcd:2379/v3 get --prefix '' --no-temp > dump.json
npm exec anticli -e http://antietcd:2379/v3 load < dump.json
```
- name: enable_prometheus
type: bool
default: true
info: |
Enable built-in Prometheus metrics exporter at mon_http_port (8060 by default).
Note that only the active (master) monitor exposes metrics, others return
HTTP 503. So you should add all monitor URLs to your Prometheus job configuration.
Grafana dashboard suitable for this exporter is here: [Vitastor-Grafana-6+.json](../../mon/scripts/Vitastor-Grafana-6+.json).
info_ru: |
Включить встроенный Prometheus-экспортер метрик на порту mon_http_port (по умолчанию 8060).
Обратите внимание, что метрики выставляет только активный (главный) монитор, остальные
возвращают статус HTTP 503, поэтому вам следует добавлять адреса всех мониторов
в задание по сбору метрик Prometheus.
Дашборд для Grafana, подходящий для этого экспортера: [Vitastor-Grafana-6+.json](../../mon/scripts/Vitastor-Grafana-6+.json).
- name: mon_http_port
type: int
default: 8060
info: HTTP port for monitors to listen on (including metrics exporter)
info_ru: Порт, на котором мониторы принимают HTTP-соединения (в том числе для отдачи метрик)
- name: mon_http_ip
type: string
info: IP address for monitors to listen on (all addresses by default)
info_ru: IP-адрес, на котором мониторы принимают HTTP-соединения (по умолчанию все адреса)
- name: mon_https_cert
type: string
info: Path to PEM SSL certificate file for monitor to listen using HTTPS
info_ru: Путь к PEM-файлу SSL-сертификата для монитора, чтобы принимать соединения через HTTPS
- name: mon_https_key
type: string
info: Path to PEM SSL private key file for monitor to listen using HTTPS
info_ru: Путь к PEM-файлу секретного SSL-ключа для монитора, чтобы принимать соединения через HTTPS
- name: mon_https_client_auth
type: bool
default: false
info: Enable HTTPS client certificate-based authorization for monitor connections
info_ru: Включить в HTTPS-сервере монитора авторизацию по клиентским сертификатам
- name: mon_https_ca
type: string
info: Path to CA certificate for client HTTPS authorization
info_ru: Путь к удостоверяющему сертификату для авторизации клиентских HTTPS соединений
- name: etcd_mon_ttl - name: etcd_mon_ttl
type: sec type: sec
min: 5 min: 10
default: 1 default: 30
info: Monitor etcd lease refresh interval in seconds info: Monitor etcd lease refresh interval in seconds
info_ru: Интервал обновления etcd резервации (lease) монитором info_ru: Интервал обновления etcd резервации (lease) монитором
- name: etcd_mon_timeout - name: etcd_mon_timeout
@ -163,12 +63,3 @@
"host" и "osd" являются предопределёнными и не могут быть удалены. Если "host" и "osd" являются предопределёнными и не могут быть удалены. Если
один из них отсутствует в конфигурации, он доопределяется с приоритетом по один из них отсутствует в конфигурации, он доопределяется с приоритетом по
умолчанию (100 для уровня "host", 101 для "osd"). умолчанию (100 для уровня "host", 101 для "osd").
- name: use_old_pg_combinator
type: bool
default: false
info: |
Use the old PG combination generator which doesn't support [level_placement](pool.en.md#level_placement)
and [raw_placement](pool.en.md#raw_placement) for pools which don't use this features.
info_ru: |
Использовать старый генератор комбинаций PG, не поддерживающий [level_placement](pool.ru.md#level_placement)
и [raw_placement](pool.ru.md#raw_placement) для пулов, которые не используют данные функции.

View File

@ -48,20 +48,11 @@
type: string type: string
info: | info: |
RDMA device name to use for Vitastor OSD communications (for example, RDMA device name to use for Vitastor OSD communications (for example,
"rocep5s0f0"). If not specified, Vitastor will try to find an RoCE "rocep5s0f0"). Please note that Vitastor RDMA requires Implicit On-Demand
device matching [osd_network](osd.en.md#osd_network), preferring RoCEv2, Paging (Implicit ODP) and Scatter/Gather (SG) support from the RDMA device
or choose the first available RDMA device if no RoCE devices are to work. For example, Mellanox ConnectX-3 and older adapters don't have
found or if `osd_network` is not specified. Auto-selection is also Implicit ODP, so they're unsupported by Vitastor. Run `ibv_devinfo -v` as
unsupported with old libibverbs < v32, like in Debian 10 Buster or root to list available RDMA devices and their features.
CentOS 7.
Vitastor supports all adapters, even ones without ODP support, like
Mellanox ConnectX-3 and non-Mellanox cards. Versions up to Vitastor
1.2.0 required ODP which is only present in Mellanox ConnectX >= 4.
See also [rdma_odp](#rdma_odp).
Run `ibv_devinfo -v` as root to list available RDMA devices and their
features.
Remember that you also have to configure your network switches if you use Remember that you also have to configure your network switches if you use
RoCE/RoCEv2, otherwise you may experience unstable performance. Refer to RoCE/RoCEv2, otherwise you may experience unstable performance. Refer to
@ -70,20 +61,12 @@
PFC (Priority Flow Control) and ECN (Explicit Congestion Notification). PFC (Priority Flow Control) and ECN (Explicit Congestion Notification).
info_ru: | info_ru: |
Название RDMA-устройства для связи с Vitastor OSD (например, "rocep5s0f0"). Название RDMA-устройства для связи с Vitastor OSD (например, "rocep5s0f0").
Если не указано, Vitastor попробует найти RoCE-устройство, соответствующее Имейте в виду, что поддержка RDMA в Vitastor требует функций устройства
[osd_network](osd.en.md#osd_network), предпочитая RoCEv2, или выбрать первое Implicit On-Demand Paging (Implicit ODP) и Scatter/Gather (SG). Например,
попавшееся RDMA-устройство, если RoCE-устройств нет или если сеть `osd_network` адаптеры Mellanox ConnectX-3 и более старые не поддерживают Implicit ODP и
не задана. Также автовыбор не поддерживается со старыми версиями библиотеки потому не поддерживаются в Vitastor. Запустите `ibv_devinfo -v` от имени
libibverbs < v32, например в Debian 10 Buster или CentOS 7. суперпользователя, чтобы посмотреть список доступных RDMA-устройств, их
параметры и возможности.
Vitastor поддерживает все модели адаптеров, включая те, у которых
нет поддержки ODP, то есть вы можете использовать RDMA с ConnectX-3 и
картами производства не Mellanox. Версии Vitastor до 1.2.0 включительно
требовали ODP, который есть только на Mellanox ConnectX 4 и более новых.
См. также [rdma_odp](#rdma_odp).
Запустите `ibv_devinfo -v` от имени суперпользователя, чтобы посмотреть
список доступных RDMA-устройств, их параметры и возможности.
Обратите внимание, что если вы используете RoCE/RoCEv2, вам также необходимо Обратите внимание, что если вы используете RoCE/RoCEv2, вам также необходимо
правильно настроить для него коммутаторы, иначе вы можете столкнуться с правильно настроить для него коммутаторы, иначе вы можете столкнуться с
@ -105,29 +88,23 @@
`ibv_devinfo -v`. `ibv_devinfo -v`.
- name: rdma_gid_index - name: rdma_gid_index
type: int type: int
default: 0
info: | info: |
Global address identifier index of the RDMA device to use. Different GID Global address identifier index of the RDMA device to use. Different GID
indexes may correspond to different protocols like RoCEv1, RoCEv2 and iWARP. indexes may correspond to different protocols like RoCEv1, RoCEv2 and iWARP.
Search for "GID" in `ibv_devinfo -v` output to determine which GID index Search for "GID" in `ibv_devinfo -v` output to determine which GID index
you need. you need.
If not specified, Vitastor will try to auto-select a RoCEv2 IPv4 GID, then **IMPORTANT:** If you want to use RoCEv2 (as recommended) then the correct
RoCEv2 IPv6 GID, then RoCEv1 IPv4 GID, then RoCEv1 IPv6 GID, then IB GID. rdma_gid_index is usually 1 (IPv6) or 3 (IPv4).
GID auto-selection is unsupported with libibverbs < v32.
A correct rdma_gid_index for RoCEv2 is usually 1 (IPv6) or 3 (IPv4).
info_ru: | info_ru: |
Номер глобального идентификатора адреса RDMA-устройства, который следует Номер глобального идентификатора адреса RDMA-устройства, который следует
использовать. Разным gid_index могут соответствовать разные протоколы связи: использовать. Разным gid_index могут соответствовать разные протоколы связи:
RoCEv1, RoCEv2, iWARP. Чтобы понять, какой нужен вам - смотрите строчки со RoCEv1, RoCEv2, iWARP. Чтобы понять, какой нужен вам - смотрите строчки со
словом "GID" в выводе команды `ibv_devinfo -v`. словом "GID" в выводе команды `ibv_devinfo -v`.
Если не указан, Vitastor попробует автоматически выбрать сначала GID, **ВАЖНО:** Если вы хотите использовать RoCEv2 (как мы и рекомендуем), то
соответствующий RoCEv2 IPv4, потом RoCEv2 IPv6, потом RoCEv1 IPv4, потом правильный rdma_gid_index, как правило, 1 (IPv6) или 3 (IPv4).
RoCEv1 IPv6, потом IB. Авто-выбор GID не поддерживается со старыми версиями
libibverbs < v32.
Правильный rdma_gid_index для RoCEv2, как правило, 1 (IPv6) или 3 (IPv4).
- name: rdma_mtu - name: rdma_mtu
type: int type: int
default: 4096 default: 4096
@ -183,45 +160,6 @@
у принимающей стороны в процессе работы не заканчивались буферы на приём. у принимающей стороны в процессе работы не заканчивались буферы на приём.
Не влияет на потребление памяти - дополнительная память на операции отправки Не влияет на потребление памяти - дополнительная память на операции отправки
не выделяется. не выделяется.
- name: rdma_odp
type: bool
default: false
online: false
info: |
Use RDMA with On-Demand Paging. ODP is currently only available on Mellanox
ConnectX-4 and newer adapters. ODP allows to not register memory explicitly
for RDMA adapter to be able to use it. This, in turn, allows to skip memory
copying during sending. One would think this should improve performance, but
**in reality** RDMA performance with ODP is **drastically** worse. Example
3-node cluster with 8 NVMe in each node and 2*25 GBit/s ConnectX-6 RDMA network
without ODP pushes 3950000 read iops, but only 239000 iops with ODP...
This happens because Mellanox ODP implementation seems to be based on
message retransmissions when the adapter doesn't know about the buffer yet -
it likely uses standard "RNR retransmissions" (RNR = receiver not ready)
which is generally slow in RDMA/RoCE networks. Here's a presentation about
it from ISPASS-2021 conference: https://tkygtr6.github.io/pub/ISPASS21_slides.pdf
ODP support is retained in the code just in case a good ODP implementation
appears one day.
info_ru: |
Использовать RDMA с On-Demand Paging. ODP - функция, доступная пока что
исключительно на адаптерах Mellanox ConnectX-4 и более новых. ODP позволяет
не регистрировать память для её использования RDMA-картой. Благодаря этому
можно не копировать данные при отправке их в сеть и, казалось бы, это должно
улучшать производительность - но **по факту** получается так, что
производительность только ухудшается, причём сильно. Пример - на 3-узловом
кластере с 8 NVMe в каждом узле и сетью 2*25 Гбит/с на чтение с RDMA без ODP
удаётся снять 3950000 iops, а с ODP - всего 239000 iops...
Это происходит из-за того, что реализация ODP у Mellanox неоптимальная и
основана на повторной передаче сообщений, когда карте не известен буфер -
вероятно, на стандартных "RNR retransmission" (RNR = receiver not ready).
А данные повторные передачи в RDMA/RoCE - всегда очень медленная штука.
Презентация на эту тему с конференции ISPASS-2021: https://tkygtr6.github.io/pub/ISPASS21_slides.pdf
Возможность использования ODP сохранена в коде на случай, если вдруг в один
прекрасный день появится хорошая реализация ODP.
- name: peer_connect_interval - name: peer_connect_interval
type: sec type: sec
min: 1 min: 1
@ -260,6 +198,21 @@
Максимальное время ожидания ответа на запрос проверки состояния соединения. Максимальное время ожидания ответа на запрос проверки состояния соединения.
Если OSD не отвечает за это время, соединение отключается и производится Если OSD не отвечает за это время, соединение отключается и производится
повторная попытка соединения. повторная попытка соединения.
- name: up_wait_retry_interval
type: ms
min: 50
default: 500
online: true
info: |
OSDs respond to clients with a special error code when they receive I/O
requests for a PG that's not synchronized and started. This parameter sets
the time for the clients to wait before re-attempting such I/O requests.
info_ru: |
Когда OSD получают от клиентов запросы ввода-вывода, относящиеся к не
поднятым на данный момент на них PG, либо к PG в процессе синхронизации,
они отвечают клиентам специальным кодом ошибки, означающим, что клиент
должен некоторое время подождать перед повторением запроса. Именно это время
ожидания задаёт данный параметр.
- name: max_etcd_attempts - name: max_etcd_attempts
type: int type: int
default: 5 default: 5
@ -297,12 +250,32 @@
info_ru: | info_ru: |
Таймаут для HTTP Keep-Alive в соединениях к etcd. Должен быть больше, чем Таймаут для HTTP Keep-Alive в соединениях к etcd. Должен быть больше, чем
etcd_report_interval, чтобы keepalive гарантированно работал. etcd_report_interval, чтобы keepalive гарантированно работал.
- name: etcd_ws_keepalive_interval - name: etcd_ws_keepalive_timeout
type: sec type: sec
default: 5 default: 30
online: true online: true
info: | info: |
etcd websocket ping interval required to keep the connection alive and etcd websocket ping interval required to keep the connection alive and
detect disconnections quickly. detect disconnections quickly.
info_ru: | info_ru: |
Интервал проверки живости вебсокет-подключений к etcd. Интервал проверки живости вебсокет-подключений к etcd.
- name: client_dirty_limit
type: int
default: 33554432
online: true
info: |
Without immediate_commit=all this parameter sets the limit of "dirty"
(not committed by fsync) data allowed by the client before forcing an
additional fsync and committing the data. Also note that the client always
holds a copy of uncommitted data in memory so this setting also affects
RAM usage of clients.
This parameter doesn't affect OSDs themselves.
info_ru: |
При работе без immediate_commit=all - это лимит объёма "грязных" (не
зафиксированных fsync-ом) данных, при достижении которого клиент будет
принудительно вызывать fsync и фиксировать данные. Также стоит иметь в виду,
что в этом случае до момента fsync клиент хранит копию незафиксированных
данных в памяти, то есть, настройка влияет на потребление памяти клиентами.
Параметр не влияет на сами OSD.

View File

@ -1,47 +1,16 @@
- name: osd_iothread_count
type: int
default: 0
info: |
TCP network I/O thread count for OSD. When non-zero, a single OSD process
may handle more TCP I/O, but at a cost of increased latency because thread
switching overhead occurs. RDMA isn't affected by this option.
Because of latency, instead of enabling OSD I/O threads it's recommended to
just create multiple OSDs per disk, or use RDMA.
info_ru: |
Число отдельных потоков для обработки ввода-вывода через TCP-сеть на
стороне OSD. Включение опции позволяет каждому отдельному OSD передавать
по сети больше данных, но ухудшает задержку из-за накладных расходов
переключения потоков. На работу RDMA опция не влияет.
Из-за задержек вместо включения потоков ввода-вывода OSD рекомендуется
просто создавать по несколько OSD на каждом диске, или использовать RDMA.
- name: etcd_report_interval - name: etcd_report_interval
type: sec type: sec
default: 5 default: 5
info: | info: |
Interval at which OSDs report their liveness to etcd. Affects OSD lease time Interval at which OSDs report their state to etcd. Affects OSD lease time
and thus the failover speed. Lease time is equal to this parameter value and thus the failover speed. Lease time is equal to this parameter value
plus max_etcd_attempts * etcd_quick_timeout because it should be guaranteed plus max_etcd_attempts * etcd_quick_timeout because it should be guaranteed
that every OSD always refreshes its lease in time. that every OSD always refreshes its lease in time.
info_ru: | info_ru: |
Интервал, с которым OSD сообщает о том, что жив, в etcd. Значение параметра Интервал, с которым OSD обновляет своё состояние в etcd. Значение параметра
влияет на время резервации (lease) OSD и поэтому - на скорость переключения влияет на время резервации (lease) OSD и поэтому на скорость переключения
при падении OSD. Время lease равняется значению этого параметра плюс при падении OSD. Время lease равняется значению этого параметра плюс
max_etcd_attempts * etcd_quick_timeout. max_etcd_attempts * etcd_quick_timeout.
- name: etcd_stats_interval
type: sec
default: 30
info: |
Interval at which OSDs report their statistics to etcd. Highly affects the
imposed load on etcd, because statistics include a key for every OSD and
for every PG. At the same time, low statistic intervals make `vitastor-cli`
statistics more responsive.
info_ru: |
Интервал, с которым OSD обновляет свою статистику в etcd. Сильно влияет на
создаваемую нагрузку на etcd, потому что статистика содержит по ключу на
каждый OSD и на каждую PG. В то же время низкий интервал делает
статистику, печатаемую `vitastor-cli`, отзывчивей.
- name: run_primary - name: run_primary
type: bool type: bool
default: true default: true
@ -125,29 +94,17 @@
принудительной отправкой fsync-а. принудительной отправкой fsync-а.
- name: recovery_queue_depth - name: recovery_queue_depth
type: int type: int
default: 1 default: 4
online: true online: true
info: | info: |
Maximum recovery and rebalance operations initiated by each OSD in parallel. Maximum recovery operations per one primary OSD at any given moment of time.
Note that each OSD talks to a lot of other OSDs so actual number of parallel Currently it's the only parameter available to tune the speed or recovery
recovery operations per each OSD is greater than just recovery_queue_depth. and rebalancing, but it's planned to implement more.
Increasing this parameter can speedup recovery if [auto-tuning](#recovery_tune_interval)
allows it or if it is disabled.
info_ru: | info_ru: |
Максимальное число параллельных операций восстановления, инициируемых одним Максимальное число операций восстановления на одном первичном OSD в любой
OSD в любой момент времени. Имейте в виду, что каждый OSD обычно работает с момент времени. На данный момент единственный параметр, который можно менять
многими другими OSD, так что на практике параллелизм восстановления больше, для ускорения или замедления восстановления и перебалансировки данных, но
чем просто recovery_queue_depth. Увеличение значения этого параметра может в планах реализация других параметров.
ускорить восстановление если [автотюнинг скорости](#recovery_tune_interval)
разрешает это или если он отключён.
- name: recovery_sleep_us
type: us
default: 0
online: true
info: |
Delay for all recovery- and rebalance- related operations. If non-zero,
such operations are artificially slowed down to reduce the impact on
client I/O.
- name: recovery_pg_switch - name: recovery_pg_switch
type: int type: int
default: 128 default: 128
@ -303,96 +260,6 @@
достаточно 16- или 32-мегабайтного журнала. Однако в теории отключение достаточно 16- или 32-мегабайтного журнала. Однако в теории отключение
параметра может оказаться полезным для гибридных OSD (HDD+SSD) с большими параметра может оказаться полезным для гибридных OSD (HDD+SSD) с большими
журналами, расположенными на быстром по сравнению с HDD устройстве. журналами, расположенными на быстром по сравнению с HDD устройстве.
- name: data_io
type: string
default: direct
info: |
I/O mode for *data*. One of "direct", "cached" or "directsync". Corresponds
to O_DIRECT, O_SYNC and O_DIRECT|O_SYNC, respectively.
Choose "cached" to use Linux page cache. This may improve read performance
for hot data and slower disks - HDDs and maybe SATA SSDs - but will slightly
decrease write performance for fast disks because page cache is an overhead
itself.
Choose "directsync" to use [immediate_commit](layout-cluster.ru.md#immediate_commit)
(which requires disable_data_fsync) with drives having write-back cache
which can't be turned off, for example, Intel Optane. Also note that *some*
desktop SSDs (for example, HP EX950) may ignore O_SYNC thus making
disable_data_fsync unsafe even with "directsync".
info_ru: |
Режим ввода-вывода для *данных*. Одно из значений "direct", "cached" или
"directsync", означающих O_DIRECT, O_SYNC и O_DIRECT|O_SYNC, соответственно.
Выберите "cached", чтобы использовать системный кэш Linux (page cache) при
чтении и записи. Это может улучшить скорость чтения горячих данных с
относительно медленных дисков - HDD и, возможно, SATA SSD - но немного
снижает производительность записи для быстрых дисков, так как кэш сам по
себе тоже добавляет накладные расходы.
Выберите "directsync", если хотите задействовать
[immediate_commit](layout-cluster.ru.md#immediate_commit) (требующий
включенияd disable_data_fsync) на дисках с неотключаемым кэшем. Пример таких
дисков - Intel Optane. При этом также стоит иметь в виду, что *некоторые*
настольные SSD (например, HP EX950) игнорируют флаг O_SYNC, делая отключение
fsync небезопасным даже с режимом "directsync".
- name: meta_io
type: string
default: direct
info: |
I/O mode for *metadata*. One of "direct", "cached" or "directsync".
"cached" may improve read performance, but only under the following conditions:
1. your drives are relatively slow (HDD, SATA SSD), and
2. checksums are enabled, and
3. [inmemory_metadata](#inmemory_metadata) is disabled.
Under all these conditions, metadata blocks are read from disk on every
read request to verify checksums and caching them may reduce this extra
read load. Without (3) metadata is never read from the disk after starting,
and without (2) metadata blocks are read from disk only during journal
flushing.
"directsync" is the same as above.
If the same device is used for data and metadata, meta_io by default is set
to the same value as [data_io](#data_io).
info_ru: |
Режим ввода-вывода для *метаданных*. Одно из значений "direct", "cached" или
"directsync".
"cached" может улучшить скорость чтения, если:
1. у вас медленные диски (HDD, SATA SSD)
2. контрольные суммы включены
3. параметр [inmemory_metadata](#inmemory_metadata) отключён.
При этих условиях блоки метаданных читаются с диска при каждом запросе чтения
для проверки контрольных сумм и их кэширование может снизить дополнительную
нагрузку на диск. Без (3) метаданные никогда не читаются с диска после
запуска OSD, а без (2) блоки метаданных читаются только при сбросе журнала.
Если одно и то же устройство используется для данных и метаданных, режим
ввода-вывода метаданных по умолчанию устанавливается равным [data_io](#data_io).
- name: journal_io
type: string
default: direct
info: |
I/O mode for *journal*. One of "direct", "cached" or "directsync".
Here, "cached" may only improve read performance for recent writes and
only if [inmemory_journal](#inmemory_journal) is turned off.
If the same device is used for metadata and journal, journal_io by default
is set to the same value as [meta_io](#meta_io).
info_ru: |
Режим ввода-вывода для *журнала*. Одно из значений "direct", "cached" или
"directsync".
Здесь "cached" может улучшить скорость чтения только недавно записанных
данных и только если параметр [inmemory_journal](#inmemory_journal)
отключён.
Если одно и то же устройство используется для метаданных и журнала,
режим ввода-вывода журнала по умолчанию устанавливается равным
[meta_io](#meta_io).
- name: journal_sector_buffer_count - name: journal_sector_buffer_count
type: int type: int
default: 32 default: 32
@ -656,112 +523,3 @@
считается некорректной. Однако, если "лучшую" версию с числом доступных считается некорректной. Однако, если "лучшую" версию с числом доступных
копий большим, чем у всех других версий, найти невозможно, то объект тоже копий большим, чем у всех других версий, найти невозможно, то объект тоже
маркируется неконсистентным. маркируется неконсистентным.
- name: recovery_tune_interval
type: sec
default: 1
online: true
info: |
Interval at which OSD re-considers client and recovery load and automatically
adjusts [recovery_sleep_us](#recovery_sleep_us). Recovery auto-tuning is
disabled if recovery_tune_interval is set to 0.
Auto-tuning targets utilization. Utilization is a measure of load and is
equal to the product of iops and average latency (so it may be greater
than 1). You set "low" and "high" client utilization thresholds and two
corresponding target recovery utilization levels. OSD calculates desired
recovery utilization from client utilization using linear interpolation
and auto-tunes recovery operation delay to make actual recovery utilization
match desired.
This allows to reduce recovery/rebalance impact on client operations. It is
of course impossible to remove it completely, but it should become adequate.
In some tests rebalance could earlier drop client write speed from 1.5 GB/s
to 50-100 MB/s, with default auto-tuning settings it now only reduces
to ~1 GB/s.
info_ru: |
Интервал, с которым OSD пересматривает клиентскую нагрузку и нагрузку
восстановления и автоматически подстраивает [recovery_sleep_us](#recovery_sleep_us).
Автотюнинг (автоподстройка) отключается, если recovery_tune_interval
устанавливается в значение 0.
Автотюнинг регулирует утилизацию. Утилизация является мерой нагрузки
и равна произведению числа операций в секунду и средней задержки
(то есть, она может быть выше 1). Вы задаёте два уровня клиентской
утилизации - "низкий" и "высокий" (low и high) и два соответствующих
целевых уровня утилизации операциями восстановления. OSD рассчитывает
желаемый уровень утилизации восстановления линейной интерполяцией от
клиентской утилизации и подстраивает задержку операций восстановления
так, чтобы фактическая утилизация восстановления совпадала с желаемой.
Это позволяет снизить влияние восстановления и ребаланса на клиентские
операции. Конечно, невозможно исключить такое влияние полностью, но оно
должно становиться адекватнее. В некоторых тестах перебалансировка могла
снижать клиентскую скорость записи с 1.5 ГБ/с до 50-100 МБ/с, а теперь, с
настройками автотюнинга по умолчанию, она снижается только до ~1 ГБ/с.
- name: recovery_tune_util_low
type: float
default: 0.1
online: true
info: |
Desired recovery/rebalance utilization when client load is high, i.e. when
it is at or above recovery_tune_client_util_high.
info_ru: |
Желаемая утилизация восстановления в моменты, когда клиентская нагрузка
высокая, то есть, находится на уровне или выше recovery_tune_client_util_high.
- name: recovery_tune_util_high
type: float
default: 1
online: true
info: |
Desired recovery/rebalance utilization when client load is low, i.e. when
it is at or below recovery_tune_client_util_low.
info_ru: |
Желаемая утилизация восстановления в моменты, когда клиентская нагрузка
низкая, то есть, находится на уровне или ниже recovery_tune_client_util_low.
- name: recovery_tune_client_util_low
type: float
default: 0
online: true
info: Client utilization considered "low".
info_ru: Клиентская утилизация, которая считается "низкой".
- name: recovery_tune_client_util_high
type: float
default: 0.5
online: true
info: Client utilization considered "high".
info_ru: Клиентская утилизация, которая считается "высокой".
- name: recovery_tune_agg_interval
type: int
default: 10
online: true
info: |
The number of last auto-tuning iterations to use for calculating the
delay as average. Lower values result in quicker response to client
load change, higher values result in more stable delay. Default value of 10
is usually fine.
info_ru: |
Число последних итераций автоподстройки для расчёта задержки как среднего
значения. Меньшие значения параметра ускоряют отклик на изменение нагрузки,
большие значения делают задержку стабильнее. Значение по умолчанию 10
обычно нормальное и не требует изменений.
- name: recovery_tune_sleep_min_us
type: us
default: 10
online: true
info: |
Minimum possible value for auto-tuned recovery_sleep_us. Lower values
are changed to 0.
info_ru: |
Минимальное возможное значение авто-подстроенного recovery_sleep_us.
Меньшие значения заменяются на 0.
- name: recovery_tune_sleep_cutoff_us
type: us
default: 10000000
online: true
info: |
Maximum possible value for auto-tuned recovery_sleep_us. Higher values
are treated as outliers and ignored in aggregation.
info_ru: |
Максимальное возможное значение авто-подстроенного recovery_sleep_us.
Большие значения считаются случайными выбросами и игнорируются в
усреднении.

View File

@ -17,27 +17,4 @@ and apply all `NNN-*.yaml` manifests to your Kubernetes installation:
for i in ./???-*.yaml; do kubectl apply -f $i; done for i in ./???-*.yaml; do kubectl apply -f $i; done
``` ```
After that you'll be able to create PersistentVolumes. After that you'll be able to create PersistentVolumes. See example in [csi/deploy/example-pvc.yaml](../../csi/deploy/example-pvc.yaml).
**Important:** For best experience, use Linux kernel at least 5.15 with [VDUSE](../usage/qemu.en.md#vduse)
kernel modules enabled (vdpa, vduse, virtio-vdpa). If your distribution doesn't
have them pre-built - build them yourself ([instructions](../usage/qemu.en.md#vduse)),
I promise it's worth it :-). When VDUSE is unavailable, CSI driver uses [NBD](../usage/nbd.en.md)
to map Vitastor devices. NBD is slower and prone to timeout issues: if Vitastor
cluster becomes unresponsible for more than [nbd_timeout](../config/client.en.md#nbd_timeout),
the NBD device detaches and breaks pods using it.
## Features
Vitastor CSI supports:
- Kubernetes starting with 1.20 (or 1.17 for older vitastor-csi <= 1.1.0)
- Filesystem RWO (ReadWriteOnce) volumes. Example: [PVC](../../csi/deploy/example-pvc.yaml), [pod](../../csi/deploy/example-test-pod.yaml)
- Raw block RWX (ReadWriteMany) volumes. Example: [PVC](../../csi/deploy/example-pvc-block.yaml), [pod](../../csi/deploy/example-test-pod-block.yaml)
- Volume expansion
- Volume snapshots. Example: [snapshot class](../../csi/deploy/example-snapshot-class.yaml), [snapshot](../../csi/deploy/example-snapshot.yaml), [clone](../../csi/deploy/example-snapshot-clone.yaml)
- [VDUSE](../usage/qemu.en.md#vduse) (preferred) and [NBD](../usage/nbd.en.md) device mapping methods
- Upgrades with VDUSE - new handler processes are restarted when CSI pods are restarted themselves
- VDUSE daemon auto-restart - handler processes are automatically restarted if they crash due to a bug in Vitastor client code
- Multiple clusters by using multiple configuration files in ConfigMap.
Remember that to use snapshots with CSI you also have to install [Snapshot Controller and CRDs](https://kubernetes-csi.github.io/docs/snapshot-controller.html#deployment).

View File

@ -17,27 +17,4 @@
for i in ./???-*.yaml; do kubectl apply -f $i; done for i in ./???-*.yaml; do kubectl apply -f $i; done
``` ```
После этого вы сможете создавать PersistentVolume. После этого вы сможете создавать PersistentVolume. Пример смотрите в файле [csi/deploy/example-pvc.yaml](../../csi/deploy/example-pvc.yaml).
**Важно:** Лучше всего использовать ядро Linux версии не менее 5.15 с включёнными модулями
[VDUSE](../usage/qemu.ru.md#vduse) (vdpa, vduse, virtio-vdpa). Если в вашем дистрибутиве
они не собраны из коробки - соберите их сами, обещаю, что это стоит того ([инструкция](../usage/qemu.ru.md#vduse)) :-).
Когда VDUSE недоступно, CSI-плагин использует [NBD](../usage/nbd.ru.md) для подключения
дисков, а NBD медленнее и имеет проблему таймаута - если кластер остаётся недоступным
дольше, чем [nbd_timeout](../config/client.ru.md#nbd_timeout), NBD-устройство отключается
и ломает поды, использующие его.
## Возможности
CSI-плагин Vitastor поддерживает:
- Версии Kubernetes, начиная с 1.20 (или с 1.17 для более старых vitastor-csi <= 1.1.0)
- Файловые RWO (ReadWriteOnce) тома. Пример: [PVC](../../csi/deploy/example-pvc.yaml), [под](../../csi/deploy/example-test-pod.yaml)
- Сырые блочные RWX (ReadWriteMany) тома. Пример: [PVC](../../csi/deploy/example-pvc-block.yaml), [под](../../csi/deploy/example-test-pod-block.yaml)
- Расширение размера томов
- Снимки томов. Пример: [класс снимков](../../csi/deploy/example-snapshot-class.yaml), [снимок](../../csi/deploy/example-snapshot.yaml), [клон снимка](../../csi/deploy/example-snapshot-clone.yaml)
- Способы подключения устройств [VDUSE](../usage/qemu.ru.md#vduse) (предпочитаемый) и [NBD](../usage/nbd.ru.md)
- Обновление при использовании VDUSE - новые процессы-обработчики устройств успешно перезапускаются вместе с самими подами CSI
- Автоперезауск демонов VDUSE - процесс-обработчик автоматически перезапустится, если он внезапно упадёт из-за бага в коде клиента Vitastor
- Несколько кластеров через задание нескольких файлов конфигурации в ConfigMap.
Не забывайте, что для использования снимков нужно сначала установить [контроллер снимков и CRD](https://kubernetes-csi.github.io/docs/snapshot-controller.html#deployment).

View File

@ -1,186 +0,0 @@
[Documentation](../../README.md#documentation) → Installation → OpenNebula
-----
[Читать на русском](opennebula.ru.md)
# OpenNebula
## Automatic Installation
OpenNebula plugin is packaged as `vitastor-opennebula` Debian and RPM package since Vitastor 1.9.0. So:
- Run `apt-get install vitastor-opennebula` or `yum install vitastor-opennebula` after installing OpenNebula on all nodes
- Check that it prints "OK, Vitastor OpenNebula patches successfully applied" or "OK, Vitastor OpenNebula patches are already applied"
- If it does not, refer to [Manual Installation](#manual-installation) and apply configuration file changes manually
- Make sure that Vitastor patched versions of QEMU and libvirt are installed
(`dpkg -l qemu-system-x86`, `dpkg -l | grep libvirt`, `rpm -qa | grep qemu`, `rpm -qa | grep qemu`, `rpm -qa | grep libvirt-libs` should show "vitastor" in version names)
- [Block VM access to Vitastor cluster](#block-vm-access-to-vitastor-cluster)
## Manual Installation
Install OpenNebula. Then, on each node:
- Copy [opennebula/remotes](../../opennebula/remotes) into `/var/lib/one` recursively: `cp -r opennebula/remotes /var/lib/one/`
- Copy [opennebula/sudoers.d](../../opennebula/sudoers.d) to `/etc`: `cp -r opennebula/sudoers.d /etc/`
- Apply [downloader-vitastor.sh.diff](../../opennebula/remotes/datastore/vitastor/downloader-vitastor.sh.diff) to `/var/lib/one/remotes/datastore/downloader.sh`:
`patch /var/lib/one/remotes/datastore/downloader.sh < opennebula/remotes/datastore/vitastor/downloader-vitastor.sh.diff` - or read the patch and apply the same change manually
- Add `kvm-vitastor` to `LIVE_DISK_SNAPSHOTS` in `/etc/one/vmm_exec/vmm_execrc`
- If on Debian or Ubuntu (and AppArmor is used), add Vitastor config file path(s) to `/etc/apparmor.d/local/abstractions/libvirt-qemu`: for example,
`echo ' "/etc/vitastor/vitastor.conf" r,' >> /etc/apparmor.d/local/abstractions/libvirt-qemu`
- Apply changes to `/etc/one/oned.conf`
### oned.conf changes
1. Add deploy script override in kvm VM_MAD: add `-l deploy.vitastor` to ARGUMENTS.
```diff
VM_MAD = [
NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_vmm_exec",
- ARGUMENTS = "-t 15 -r 0 kvm -p",
+ ARGUMENTS = "-t 15 -r 0 kvm -p -l deploy=deploy.vitastor",
DEFAULT = "vmm_exec/vmm_exec_kvm.conf",
TYPE = "kvm",
KEEP_SNAPSHOTS = "yes",
LIVE_RESIZE = "yes",
SUPPORT_SHAREABLE = "yes",
IMPORTED_VMS_ACTIONS = "terminate, terminate-hard, hold, release, suspend,
resume, delete, reboot, reboot-hard, resched, unresched, disk-attach,
disk-detach, nic-attach, nic-detach, snapshot-create, snapshot-delete,
resize, updateconf, update"
]
```
Optional: if you also want to save VM RAM checkpoints to Vitastor, use
`-l deploy=deploy.vitastor,save=save.vitastor,restore=restore.vitastor`
instead of just `-l deploy=deploy.vitastor`.
2. Add `vitastor` to TM_MAD.ARGUMENTS and DATASTORE_MAD.ARGUMENTS:
```diff
TM_MAD = [
EXECUTABLE = "one_tm",
- ARGUMENTS = "-t 15 -d dummy,lvm,shared,fs_lvm,fs_lvm_ssh,qcow2,ssh,ceph,dev,vcenter,iscsi_libvirt"
+ ARGUMENTS = "-t 15 -d dummy,lvm,shared,fs_lvm,fs_lvm_ssh,qcow2,ssh,ceph,vitastor,dev,vcenter,iscsi_libvirt"
]
DATASTORE_MAD = [
EXECUTABLE = "one_datastore",
- ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,dev,iscsi_libvirt,vcenter,restic,rsync -s shared,ssh,ceph,fs_lvm,fs_lvm_ssh,qcow2,vcenter"
+ ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,vitastor,dev,iscsi_libvirt,vcenter,restic,rsync -s shared,ssh,ceph,vitastor,fs_lvm,fs_lvm_ssh,qcow2,vcenter"
]
```
3. Add INHERIT_DATASTORE_ATTR for two Vitastor attributes:
```
INHERIT_DATASTORE_ATTR = "VITASTOR_CONF"
INHERIT_DATASTORE_ATTR = "IMAGE_PREFIX"
```
4. Add TM_MAD_CONF and DS_MAD_CONF for Vitastor:
```
TM_MAD_CONF = [
NAME = "vitastor", LN_TARGET = "NONE", CLONE_TARGET = "SELF", SHARED = "YES",
DS_MIGRATE = "NO", DRIVER = "raw", ALLOW_ORPHANS="format",
TM_MAD_SYSTEM = "ssh,shared", LN_TARGET_SSH = "SYSTEM", CLONE_TARGET_SSH = "SYSTEM",
DISK_TYPE_SSH = "FILE", LN_TARGET_SHARED = "NONE",
CLONE_TARGET_SHARED = "SELF", DISK_TYPE_SHARED = "FILE"
]
DS_MAD_CONF = [
NAME = "vitastor",
REQUIRED_ATTRS = "DISK_TYPE,BRIDGE_LIST",
PERSISTENT_ONLY = "NO",
MARKETPLACE_ACTIONS = "export"
]
```
## Create Datastores
Example Image and System Datastore definitions:
[opennebula/vitastor-imageds.conf](../../opennebula/vitastor-imageds.conf) and
[opennebula/vitastor-systemds.conf](../../opennebula/vitastor-systemds.conf).
Change parameters to your will:
- POOL_NAME is Vitastor pool name to store images.
- IMAGE_PREFIX is a string prepended to all Vitastor image names.
- BRIDGE_LIST is a list of hosts with access to Vitastor cluster, mostly used for image (not system) datastore operations.
- VITASTOR_CONF is the path to cluster configuration. Note that it should be also added to `/etc/apparmor.d/local/abstractions/libvirt-qemu` if you use AppArmor.
- STAGING_DIR is a temporary directory used when importing external images. Should have free space sufficient for downloading external images.
Then create datastores using `onedatastore create vitastor-imageds.conf` and `onedatastore create vitastor-systemds.conf` (or use UI).
## Block VM access to Vitastor cluster
Vitastor doesn't support any authentication yet, so you MUST block VM guest access to the Vitastor cluster at the network level.
If you use VLAN networking for VMs - make sure you use different VLANs for VMs and hypervisor/storage network and
block access between them using your firewall/switch configuration.
If you use something more stupid like bridged networking, you probably have to use manual firewall/iptables setup
to only allow access to Vitastor from hypervisor IPs.
Also you need to switch network to "Bridged & Security Groups" and enable IP spoofing filters in OpenNebula.
Problem is that OpenNebula's IP spoofing filter doesn't affect local interfaces of the hypervisor i.e. when
it's enabled a VM can't talk to other VMs or to the outer world using a spoofed IP, but it CAN talk to the
hypervisor if it takes an IP from its subnet. To fix that you also need some more iptables.
So the complete "stupid" bridged network filter setup could look like the following
(here `10.0.3.0/24` is the VM subnet and `10.0.2.0/24` is the hypervisor subnet):
```
# Allow incoming traffic from physical device
iptables -A INPUT -m physdev --physdev-in eth0 -j ACCEPT
# Do not allow incoming traffic from VMs, but not from VM subnet
iptables -A INPUT ! -s 10.0.3.0/24 -i onebr0 -j DROP
# Drop traffic from VMs to hypervisor/storage subnet
iptables -I FORWARD 1 -s 10.0.3.0/24 -d 10.0.2.0/24 -j DROP
```
## Testing
The OpenNebula plugin includes quite a bit of bash scripts, so here's their description to get an idea about what they actually do.
| Script | Action | How to Test |
| ----------------------- | ----------------------------------------- | ------------------------------------------------------------------------------------ |
| vmm/kvm/deploy.vitastor | Start a VM | Create and start a VM with Vitastor disk(s): persistent / non-persistent / volatile. |
| vmm/kvm/save.vitastor | Save VM memory checkpoint | Stop a VM using "Stop" command. |
| vmm/kvm/restore.vitastor| Restore VM memory checkpoint | Start a VM back after stopping it. |
| datastore/clone | Copy an image as persistent | Create a VM template and instantiate it as persistent. |
| datastore/cp | Import an external image | Import a VM template with images from Marketplace. |
| datastore/export | Export an image as URL | Probably: export a VM template with images to Marketplace. |
| datastore/mkfs | Create an image with FS | Storage → Images → Create → Type: Datablock, Location: Empty disk image, Filesystem: Not empty. |
| datastore/monitor | Monitor used space in image datastore | Check reported used/free space in image datastore list. |
| datastore/rm | Remove a persistent image | Storage → Images → Select an image → Delete. |
| datastore/snap_delete | Delete a snapshot of a persistent image | Storage → Images → Select an image → Select a snapshot → Delete; <br> To create an image with snapshot: attach a persistent image to a VM; create a snapshot; detach the image. |
| datastore/snap_flatten | Revert an image to snapshot and delete other snapshots | Storage → Images → Select an image → Select a snapshot → Flatten. |
| datastore/snap_revert | Revert an image to snapshot | Storage → Images → Select an image → Select a snapshot → Revert. |
| datastore/stat | Get virtual size of an image in MB | No idea. Seems to be unused both in Vitastor and Ceph datastores. |
| tm/clone | Clone a non-persistent image to a VM disk | Attach a non-persistent image to a VM. |
| tm/context | Generate a contextualisation VM disk | Create a VM with enabled contextualisation (default). Common host FS-based version is used in Vitastor and Ceph datastores. |
| tm/cpds | Copy a VM disk / its snapshot to an image | Select a VM → Select a disk → Optionally select a snapshot → Save as. |
| tm/delete | Delete a cloned or volatile VM disk | Detach a volatile disk or a non-persistent image from a VM. |
| tm/failmigrate | Handle live migration failure | No action. Script is empty in Vitastor and Ceph. In other datastores, should roll back actions done by tm/premigrate. |
| tm/ln | Attach a persistent image to a VM | No action. Script is empty in Vitastor and Ceph. |
| tm/mkimage | Create a volatile disk, maybe with FS | Attach a volatile disk to a VM, with or without file system. |
| tm/mkswap | Create a volatile swap disk | Attach a volatile disk to a VM, formatted as swap. |
| tm/monitor | Monitor used space in system datastore | Check reported used/free space in system datastore list. |
| tm/mv | Move a migrated VM disk between hosts | Migrate a VM between hosts. In Vitastor and Ceph datastores, doesn't do any storage action. |
| tm/mvds | Detach a persistent image from a VM | No action. The opposite of tm/ln. Script is empty in Vitastor and Ceph. In other datastores, script may copy the image from VM host back to the datastore. |
| tm/postbackup | Executed after backup | Seems that the script just removes temporary files after backup. Perform a VM backup and check that temporary files are cleaned up. |
| tm/postbackup_live | Executed after backup of a running VM | Same as tm/postbackup, but for a running VM. |
| tm/postmigrate | Executed after VM live migration | No action. Only executed for system datastore, so the script tries to call other TMs for other disks. Except that, the script does nothing in Vitastor and Ceph datastores. |
| tm/prebackup | Actual backup script: backup VM disks | Set up "rsync" backup datastore → Backup a VM to it. |
| tm/prebackup_live | Backup VM disks of a running VM | Same as tm/prebackup, but also does fsfreeze/thaw. So perform a live backup, restore it and check that disks are consistent. |
| tm/premigrate | Executed before live migration | No action. Only executed for system datastore, so the script tries to call other TMs for other disks. Except that, the script does nothing in Vitastor and Ceph datastores. |
| tm/resize | Resize a VM disk | Select a VM → Select a non-persistent disk → Resize. |
| tm/restore | Restore VM disks from backup | Set up "rsync" backup datastore → Backup a VM to it → Restore it back. |
| tm/snap_create | Create a VM disk snapshot | Select a VM → Select a disk → Create snapshot. |
| tm/snap_create_live | Create a VM disk snapshot for a live VM | Select a running VM → Select a disk → Create snapshot. |
| tm/snap_delete | Delete a VM disk snapshot | Select a VM → Select a disk → Select a snapshot → Delete. |
| tm/snap_revert | Revert a VM disk to a snapshot | Select a VM → Select a disk → Select a snapshot → Revert. |

View File

@ -1,189 +0,0 @@
[Документация](../../README-ru.md#документация) → Установка → OpenNebula
-----
[Read in English](opennebula.en.md)
# OpenNebula
## Автоматическая установка
Плагин OpenNebula Vitastor распространяется как Debian и RPM пакет `vitastor-opennebula`, начиная с версии Vitastor 1.9.0. Так что:
- Запустите `apt-get install vitastor-opennebula` или `yum install vitastor-opennebula` после установки OpenNebula на всех серверах
- Проверьте, что он выводит "OK, Vitastor OpenNebula patches successfully applied" или "OK, Vitastor OpenNebula patches are already applied" в процессе установки
- Если сообщение не выведено, пройдите по шагам инструкцию [Ручная установка](#ручная-установка) и примените правки файлов конфигурации вручную
- Удостоверьтесь, что установлены версии QEMU и libvirt с изменениями Vitastor
(`dpkg -l qemu-system-x86`, `dpkg -l | grep libvirt`, `rpm -qa | grep qemu`, `rpm -qa | grep qemu`, `rpm -qa | grep libvirt-libs` должны показывать "vitastor" в номере версии)
- [Заблокируйте доступ виртуальных машин в Vitastor](#блокировка-доступа-вм-в-vitastor)
## Ручная установка
Сначала установите саму OpenNebula. После этого, на каждом сервере:
- Скопируйте директорию [opennebula/remotes](../../opennebula/remotes) в `/var/lib/one`: `cp -r opennebula/remotes /var/lib/one/`
- Скопируйте директорию [opennebula/sudoers.d](../../opennebula/sudoers.d) в `/etc`: `cp -r opennebula/sudoers.d /etc/`
- Примените патч [downloader-vitastor.sh.diff](../../opennebula/remotes/datastore/vitastor/downloader-vitastor.sh.diff) к `/var/lib/one/remotes/datastore/downloader.sh`:
`patch /var/lib/one/remotes/datastore/downloader.sh < opennebula/remotes/datastore/vitastor/downloader-vitastor.sh.diff` - либо прочитайте патч и примените изменение вручную
- Добавьте `kvm-vitastor` в список `LIVE_DISK_SNAPSHOTS` в файле `/etc/one/vmm_exec/vmm_execrc`
- Если вы используете Debian или Ubuntu (и AppArmor), добавьте пути к файлу(ам) конфигурации Vitastor в файл `/etc/apparmor.d/local/abstractions/libvirt-qemu`: например,
`echo ' "/etc/vitastor/vitastor.conf" r,' >> /etc/apparmor.d/local/abstractions/libvirt-qemu`
- Примените изменения `/etc/one/oned.conf`
### Изменения oned.conf
1. Добавьте переопределение скрипта deploy в VM_MAD kvm, добавив `-l deploy.vitastor` в `ARGUMENTS`:
```diff
VM_MAD = [
NAME = "kvm",
SUNSTONE_NAME = "KVM",
EXECUTABLE = "one_vmm_exec",
- ARGUMENTS = "-t 15 -r 0 kvm -p",
+ ARGUMENTS = "-t 15 -r 0 kvm -p -l deploy=deploy.vitastor",
DEFAULT = "vmm_exec/vmm_exec_kvm.conf",
TYPE = "kvm",
KEEP_SNAPSHOTS = "yes",
LIVE_RESIZE = "yes",
SUPPORT_SHAREABLE = "yes",
IMPORTED_VMS_ACTIONS = "terminate, terminate-hard, hold, release, suspend,
resume, delete, reboot, reboot-hard, resched, unresched, disk-attach,
disk-detach, nic-attach, nic-detach, snapshot-create, snapshot-delete,
resize, updateconf, update"
]
```
Опционально: если вы хотите также сохранять снимки памяти ВМ в Vitastor, добавьте
`-l deploy=deploy.vitastor,save=save.vitastor,restore=restore.vitastor`
вместо просто `-l deploy=deploy.vitastor`.
2. Добавьте `vitastor` в значения TM_MAD.ARGUMENTS и DATASTORE_MAD.ARGUMENTS:
```diff
TM_MAD = [
EXECUTABLE = "one_tm",
- ARGUMENTS = "-t 15 -d dummy,lvm,shared,fs_lvm,fs_lvm_ssh,qcow2,ssh,ceph,dev,vcenter,iscsi_libvirt"
+ ARGUMENTS = "-t 15 -d dummy,lvm,shared,fs_lvm,fs_lvm_ssh,qcow2,ssh,ceph,vitastor,dev,vcenter,iscsi_libvirt"
]
DATASTORE_MAD = [
EXECUTABLE = "one_datastore",
- ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,dev,iscsi_libvirt,vcenter,restic,rsync -s shared,ssh,ceph,fs_lvm,fs_lvm_ssh,qcow2,vcenter"
+ ARGUMENTS = "-t 15 -d dummy,fs,lvm,ceph,vitastor,dev,iscsi_libvirt,vcenter,restic,rsync -s shared,ssh,ceph,vitastor,fs_lvm,fs_lvm_ssh,qcow2,vcenter"
]
```
3. Добавьте строчки с INHERIT_DATASTORE_ATTR для двух атрибутов Vitastor-хранилищ:
```
INHERIT_DATASTORE_ATTR = "VITASTOR_CONF"
INHERIT_DATASTORE_ATTR = "IMAGE_PREFIX"
```
4. Добавьте TM_MAD_CONF и DS_MAD_CONF для Vitastor:
```
TM_MAD_CONF = [
NAME = "vitastor", LN_TARGET = "NONE", CLONE_TARGET = "SELF", SHARED = "YES",
DS_MIGRATE = "NO", DRIVER = "raw", ALLOW_ORPHANS="format",
TM_MAD_SYSTEM = "ssh,shared", LN_TARGET_SSH = "SYSTEM", CLONE_TARGET_SSH = "SYSTEM",
DISK_TYPE_SSH = "FILE", LN_TARGET_SHARED = "NONE",
CLONE_TARGET_SHARED = "SELF", DISK_TYPE_SHARED = "FILE"
]
DS_MAD_CONF = [
NAME = "vitastor",
REQUIRED_ATTRS = "DISK_TYPE,BRIDGE_LIST",
PERSISTENT_ONLY = "NO",
MARKETPLACE_ACTIONS = "export"
]
```
## Создайте хранилища
Примеры настроек хранилищ образов (image) и дисков ВМ (system):
[opennebula/vitastor-imageds.conf](../../opennebula/vitastor-imageds.conf) и
[opennebula/vitastor-systemds.conf](../../opennebula/vitastor-systemds.conf).
Скопируйте настройки и поменяйте следующие параметры так, как вам необходимо:
- POOL_NAME - имя пула Vitastor для сохранения образов дисков.
- IMAGE_PREFIX - строка, добавляемая в начало имён образов дисков.
- BRIDGE_LIST - список серверов с доступом к кластеру Vitastor, используемых для операций с хранилищем образов (image, не system).
- VITASTOR_CONF - путь к конфигурации Vitastor. Имейте в виду, что этот путь также надо добавить в `/etc/apparmor.d/local/abstractions/libvirt-qemu`, если вы используете AppArmor.
- STAGING_DIR - путь к временному каталогу, используемому при импорте внешних образов. Должен иметь достаточно свободного места, чтобы вмещать скачанные образы.
После этого создайте хранилища с помощью команд `onedatastore create vitastor-imageds.conf` и `onedatastore create vitastor-systemds.conf` (либо через UI).
## Блокировка доступа ВМ в Vitastor
Vitastor пока не поддерживает никакую аутентификацию, так что вы ДОЛЖНЫ заблокировать доступ гостевых ВМ
в кластер Vitastor на сетевом уровне.
Если вы используете VLAN-сети для ВМ - удостоверьтесь, что ВМ и гипервизор/сеть хранения помещены в разные
изолированные друг от друга VLAN-ы.
Если вы используете что-то более примитивное, например, мосты (bridge), вам, скорее всего, придётся вручную
настроить iptables / межсетевой экран, чтобы разрешить доступ к Vitastor только с IP гипервизоров.
Также в этом случае нужно будет переключить обычные мосты на "Bridged & Security Groups" и включить фильтр
спуфинга IP в OpenNebula. Правда, реализация этого фильтра пока не полная, и она не блокирует доступ к
локальным интерфейсам гипервизора. То есть, включённый фильтр спуфинга IP запрещает ВМ отправлять трафик
с чужими IP к другим ВМ или во внешний мир, но не запрещает отправлять его напрямую гипервизору. Чтобы
исправить это, тоже нужны дополнительные правила iptables.
Таким образом, более-менее полная блокировка при использовании простой сети на сетевых мостах может
выглядеть так (здесь `10.0.3.0/24` - подсеть ВМ, `10.0.2.0/24` - подсеть гипервизора):
```
# Разрешаем входящий трафик с физического устройства
iptables -A INPUT -m physdev --physdev-in eth0 -j ACCEPT
# Запрещаем трафик со всех ВМ, но с IP не из подсети ВМ
iptables -A INPUT ! -s 10.0.3.0/24 -i onebr0 -j DROP
# Запрещаем трафик от ВМ к сети гипервизора
iptables -I FORWARD 1 -s 10.0.3.0/24 -d 10.0.2.0/24 -j DROP
```
## Тестирование
Плагин OpenNebula по большей части состоит из bash-скриптов, и чтобы было понятнее, что они
вообще делают - ниже приведены описания процедур, которыми можно протестировать каждый из них.
| Скрипт | Описание | Как протестировать |
| ----------------------- | --------------------------------------------- | ------------------------------------------------------------------------------------ |
| vmm/kvm/deploy.vitastor | Запустить виртуальную машину | Создайте и запустите виртуальную машину с дисками Vitastor: постоянным / непостоянным / волатильным (временным). |
| vmm/kvm/save.vitastor | Сохранить снимок памяти ВМ | Остановите виртуальную машину командой "Остановить". |
| vmm/kvm/restore.vitastor| Восстановить снимок памяти ВМ | Запустите ВМ после остановки обратно. |
| datastore/clone | Скопировать образ как "постоянный" | Создайте шаблон ВМ и создайте из него постоянную ВМ. |
| datastore/cp | Импортировать внешний образ | Импортируйте шаблон ВМ с образами дисков из Магазина OpenNebula. |
| datastore/export | Экспортировать образ как URL | Вероятно: экспортируйте шаблон ВМ с образами в Магазин. |
| datastore/mkfs | Создать образ с файловой системой | Хранилище → Образы → Создать → Тип: базовый блок данных, Расположение: пустой образ диска, Файловая система: любая непустая. |
| datastore/monitor | Вывод статистики места в хранилище образов | Проверьте статистику свободного/занятого места в списке хранилищ образов. |
| datastore/rm | Удалить "постоянный" образ | Хранилище → Образы → Выберите образ → Удалить. |
| datastore/snap_delete | Удалить снимок "постоянного" образа | Хранилище → Образы → Выберите образ → Выберите снимок → Удалить; <br> Чтобы создать образ со снимком: подключите постоянный образ к ВМ, создайте снимок, отключите образ. |
| datastore/snap_flatten | Откатить образ к снимку, удалив другие снимки | Хранилище → Образы → Выберите образ → Выберите снимок → "Выровнять" (flatten). |
| datastore/snap_revert | Откатить образ к снимку | Хранилище → Образы → Выберите образ → Выберите снимок → Откатить. |
| datastore/stat | Показать виртуальный размер образа в МБ | Неизвестно. По-видимому, в плагинах Vitastor и Ceph не используется. |
| tm/clone | Клонировать "непостоянный" образ в диск ВМ | Подключите "непостоянный" образ к ВМ. |
| tm/context | Создать диск контекстуализации ВМ | Создайте ВМ с контекстуализацией, как обычно. Но тестировать особенно нечего: в плагинах Vitastor и Ceph образ контекста хранится в локальной ФС гипервизора. |
| tm/cpds | Копировать диск ВМ/его снимок в новый образ | Выберите ВМ → Выберите диск → Опционально выберите снимок → "Сохранить как". |
| tm/delete | Удалить диск-клон или волатильный диск ВМ | Отключите волатильный или не-постоянный диск от ВМ. |
| tm/failmigrate | Обработать неудачную миграцию | Тестировать нечего. Скрипт пуст в плагинах Vitastor и Ceph. В других плагинах скрипт должен откатывать действия tm/premigrate. |
| tm/ln | Подключить "постоянный" образ к ВМ | Тестировать нечего. Скрипт пуст в плагинах Vitastor и Ceph. |
| tm/mkimage | Создать волатильный диск, без или с ФС | Подключите волатильный диск к ВМ, с или без файловой системы. |
| tm/mkswap | Создать волатильный диск подкачки | Подключите волатильный диск к ВМ, форматированный как диск подкачки (swap). |
| tm/monitor | Вывод статистики места в хранилище дисков ВМ | Проверьте статистику свободного/занятого места в списке хранилищ дисков ВМ. |
| tm/mv | Мигрировать диск ВМ между хостами | Мигрируйте ВМ между серверами. Правда, с точки зрения хранилища в плагинах Vitastor и Ceph этот скрипт ничего не делает. |
| tm/mvds | Отключить "постоянный" образ от ВМ | Тестировать нечего. Скрипт пуст в плагинах Vitastor и Ceph. В целом же скрипт обратный к tm/ln и в других хранилищах он может, например, копировать образ ВМ с диска гипервизора обратно в хранилище. |
| tm/postbackup | Выполняется после бэкапа | По-видимому, скрипт просто удаляет временные файлы после резервного копирования. Так что можно провести его и проверить, что на серверах не осталось временных файлов. |
| tm/postbackup_live | Выполняется после бэкапа запущенной ВМ | То же, что tm/postbackup, но для запущенной ВМ. |
| tm/postmigrate | Выполняется после миграции ВМ | Тестировать нечего. Однако, OpenNebula запускает скрипт только для системного хранилища, поэтому он вызывает аналогичные скрипты для хранилищ других дисков той же ВМ. Помимо этого в плагинах Vitastor и Ceph скрипт ничего не делает. |
| tm/prebackup | Выполнить резервное копирование дисков ВМ | Создайте хранилище резервных копий типа "rsync" → Забэкапьте в него ВМ. |
| tm/prebackup_live | То же самое для запущенной ВМ | То же, что tm/prebackup, но запускает fsfreeze/thaw (остановку доступа к дискам). Так что смысл теста - проведите резервное копирование и проверьте, что данные скопировались консистентно. |
| tm/premigrate | Выполняется перед миграцией ВМ | Тестировать нечего. Аналогично tm/postmigrate запускается только для системного хранилища. |
| tm/resize | Изменить размер диска ВМ | Выберите ВМ → Выберите непостоянный диск → Измените его размер. |
| tm/restore | Восстановить диски ВМ из бэкапа | Создайте хранилище резервных копий → Забэкапьте в него ВМ → Восстановите её обратно. |
| tm/snap_create | Создать снимок диска ВМ | Выберите ВМ → Выберите диск → Создайте снимок. |
| tm/snap_create_live | Создать снимок диска запущенной ВМ | Выберите запущенную ВМ → Выберите диск → Создайте снимок. |
| tm/snap_delete | Удалить снимок диска ВМ | Выберите ВМ → Выберите диск → Выберите снимок → Удалить. |
| tm/snap_revert | Откатить диск ВМ к снимку | Выберите ВМ → Выберите диск → Выберите снимок → Откатить. |

View File

@ -14,9 +14,9 @@
- Debian 12 (Bookworm/Sid): `deb https://vitastor.io/debian bookworm main` - Debian 12 (Bookworm/Sid): `deb https://vitastor.io/debian bookworm main`
- Debian 11 (Bullseye): `deb https://vitastor.io/debian bullseye main` - Debian 11 (Bullseye): `deb https://vitastor.io/debian bullseye main`
- Debian 10 (Buster): `deb https://vitastor.io/debian buster main` - Debian 10 (Buster): `deb https://vitastor.io/debian buster main`
- Add `-oldstable` to bookworm/bullseye/buster in this line to install the last - For Debian 10 (Buster) also enable backports repository:
stable version from 0.9.x branch instead of 1.x `deb http://deb.debian.org/debian buster-backports main`
- Install packages: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu-system-x86` - Install packages: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu`
## CentOS ## CentOS

View File

@ -14,9 +14,9 @@
- Debian 12 (Bookworm/Sid): `deb https://vitastor.io/debian bookworm main` - Debian 12 (Bookworm/Sid): `deb https://vitastor.io/debian bookworm main`
- Debian 11 (Bullseye): `deb https://vitastor.io/debian bullseye main` - Debian 11 (Bullseye): `deb https://vitastor.io/debian bullseye main`
- Debian 10 (Buster): `deb https://vitastor.io/debian buster main` - Debian 10 (Buster): `deb https://vitastor.io/debian buster main`
- Добавьте `-oldstable` к слову bookworm/bullseye/buster в этой строке, чтобы - Для Debian 10 (Buster) также включите репозиторий backports:
установить последнюю стабильную версию из ветки 0.9.x вместо 1.x `deb http://deb.debian.org/debian buster-backports main`
- Установите пакеты: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu-system-x86` - Установите пакеты: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu`
## CentOS ## CentOS

View File

@ -6,10 +6,10 @@
# Proxmox VE # Proxmox VE
To enable Vitastor support in Proxmox Virtual Environment (6.4-8.1 are supported): To enable Vitastor support in Proxmox Virtual Environment (6.4-8.0 are supported):
- Add the corresponding Vitastor Debian repository into sources.list on Proxmox hosts: - Add the corresponding Vitastor Debian repository into sources.list on Proxmox hosts:
bookworm for 8.1, pve8.0 for 8.0, bullseye for 7.4, pve7.3 for 7.3, pve7.2 for 7.2, pve7.1 for 7.1, buster for 6.4 bookworm for 8.0, bullseye for 7.4, pve7.3 for 7.3, pve7.2 for 7.2, pve7.1 for 7.1, buster for 6.4
- Install vitastor-client, pve-qemu-kvm, pve-storage-vitastor (* or see note) packages from Vitastor repository - Install vitastor-client, pve-qemu-kvm, pve-storage-vitastor (* or see note) packages from Vitastor repository
- Define storage in `/etc/pve/storage.cfg` (see below) - Define storage in `/etc/pve/storage.cfg` (see below)
- Block network access from VMs to Vitastor network (to OSDs and etcd), - Block network access from VMs to Vitastor network (to OSDs and etcd),
@ -17,15 +17,15 @@ To enable Vitastor support in Proxmox Virtual Environment (6.4-8.1 are supported
- Restart pvedaemon: `systemctl restart pvedaemon` - Restart pvedaemon: `systemctl restart pvedaemon`
`/etc/pve/storage.cfg` example (the only required option is vitastor_pool, all others `/etc/pve/storage.cfg` example (the only required option is vitastor_pool, all others
are listed below with their default values; `vitastor_ssd` is Proxmox storage pool id): are listed below with their default values):
``` ```
vitastor: vitastor_ssd vitastor: vitastor
# pool to put new images into # pool to put new images into
vitastor_pool testpool vitastor_pool testpool
# path to the configuration file # path to the configuration file
vitastor_config_path /etc/vitastor/vitastor.conf vitastor_config_path /etc/vitastor/vitastor.conf
# etcd address(es), OPTIONAL, required only if missing in the configuration file # etcd address(es), required only if missing in the configuration file
vitastor_etcd_address 192.168.7.2:2379/v3 vitastor_etcd_address 192.168.7.2:2379/v3
# prefix for keys in etcd # prefix for keys in etcd
vitastor_etcd_prefix /vitastor vitastor_etcd_prefix /vitastor

View File

@ -1,4 +1,4 @@
[Документация](../../README-ru.md#документация) → Установка → Proxmox VE [Документация](../../README-ru.md#документация) → Установка → Proxmox
----- -----
@ -6,25 +6,25 @@
# Proxmox VE # Proxmox VE
Чтобы подключить Vitastor к Proxmox Virtual Environment (поддерживаются версии 6.4-8.1): Чтобы подключить Vitastor к Proxmox Virtual Environment (поддерживаются версии 6.4-8.0):
- Добавьте соответствующий Debian-репозиторий Vitastor в sources.list на хостах Proxmox: - Добавьте соответствующий Debian-репозиторий Vitastor в sources.list на хостах Proxmox:
bookworm для 8.1, pve8.0 для 8.0, bullseye для 7.4, pve7.3 для 7.3, pve7.2 для 7.2, pve7.1 для 7.1, buster для 6.4 bookworm для 8.0, bullseye для 7.4, pve7.3 для 7.3, pve7.2 для 7.2, pve7.1 для 7.1, buster для 6.4
- Установите пакеты vitastor-client, pve-qemu-kvm, pve-storage-vitastor (* или см. сноску) из репозитория Vitastor - Установите пакеты vitastor-client, pve-qemu-kvm, pve-storage-vitastor (* или см. сноску) из репозитория Vitastor
- Определите тип хранилища в `/etc/pve/storage.cfg` (см. ниже) - Определите тип хранилища в `/etc/pve/storage.cfg` (см. ниже)
- Обязательно заблокируйте доступ от виртуальных машин к сети Vitastor (OSD и etcd), т.к. Vitastor (пока) не поддерживает аутентификацию - Обязательно заблокируйте доступ от виртуальных машин к сети Vitastor (OSD и etcd), т.к. Vitastor (пока) не поддерживает аутентификацию
- Перезапустите демон Proxmox: `systemctl restart pvedaemon` - Перезапустите демон Proxmox: `systemctl restart pvedaemon`
Пример `/etc/pve/storage.cfg` (единственная обязательная опция - vitastor_pool, все остальные Пример `/etc/pve/storage.cfg` (единственная обязательная опция - vitastor_pool, все остальные
перечислены внизу для понимания значений по умолчанию; `vitastor_ssd` - имя хранилища в Proxmox): перечислены внизу для понимания значений по умолчанию):
``` ```
vitastor: vitastor_ssd vitastor: vitastor
# Пул, в который будут помещаться образы дисков # Пул, в который будут помещаться образы дисков
vitastor_pool testpool vitastor_pool testpool
# Путь к файлу конфигурации # Путь к файлу конфигурации
vitastor_config_path /etc/vitastor/vitastor.conf vitastor_config_path /etc/vitastor/vitastor.conf
# Адрес(а) etcd, ОПЦИОНАЛЬНЫ, нужны, только если не указаны в vitastor.conf # Адрес(а) etcd, нужны, только если не указаны в vitastor.conf
vitastor_etcd_address 192.168.7.2:2379/v3 vitastor_etcd_address 192.168.7.2:2379/v3
# Префикс ключей метаданных в etcd # Префикс ключей метаданных в etcd
vitastor_etcd_prefix /vitastor vitastor_etcd_prefix /vitastor

View File

@ -21,7 +21,7 @@
## Basic instructions ## Basic instructions
Download source, for example using git: `git clone --recurse-submodules https://git.yourcmc.ru/vitalif/vitastor/` Download source, for example using git: `git clone --recurse-submodules https://yourcmc.ru/git/vitalif/vitastor/`
Get `fio` source and symlink it into `<vitastor>/fio`. If you don't want to build fio engine, Get `fio` source and symlink it into `<vitastor>/fio`. If you don't want to build fio engine,
you can disable it by passing `-DWITH_FIO=no` to cmake. you can disable it by passing `-DWITH_FIO=no` to cmake.
@ -41,7 +41,7 @@ It's recommended to build the QEMU driver (qemu_driver.c) in-tree, as a part of
QEMU build process. To do that: QEMU build process. To do that:
- Install vitastor client library headers (from source or from vitastor-client-dev package) - Install vitastor client library headers (from source or from vitastor-client-dev package)
- Take a corresponding patch from `patches/qemu-*-vitastor.patch` and apply it to QEMU source - Take a corresponding patch from `patches/qemu-*-vitastor.patch` and apply it to QEMU source
- Copy `src/client/qemu_driver.c` to QEMU source directory as `block/vitastor.c` - Copy `src/qemu_driver.c` to QEMU source directory as `block/block-vitastor.c`
- Build QEMU as usual - Build QEMU as usual
But it is also possible to build it out-of-tree. To do that: But it is also possible to build it out-of-tree. To do that:

View File

@ -21,7 +21,7 @@
## Базовая инструкция ## Базовая инструкция
Скачайте исходные коды, например, из git: `git clone --recurse-submodules https://git.yourcmc.ru/vitalif/vitastor/` Скачайте исходные коды, например, из git: `git clone --recurse-submodules https://yourcmc.ru/git/vitalif/vitastor/`
Скачайте исходные коды пакета `fio`, распакуйте их и создайте символическую ссылку на них Скачайте исходные коды пакета `fio`, распакуйте их и создайте символическую ссылку на них
в директории исходников Vitastor: `<vitastor>/fio`. Либо, если вы не хотите собирать плагин fio, в директории исходников Vitastor: `<vitastor>/fio`. Либо, если вы не хотите собирать плагин fio,
@ -41,7 +41,7 @@ cmake .. && make -j8 install
Драйвер QEMU (qemu_driver.c) рекомендуется собирать вместе с самим QEMU. Для этого: Драйвер QEMU (qemu_driver.c) рекомендуется собирать вместе с самим QEMU. Для этого:
- Установите заголовки клиентской библиотеки Vitastor (из исходников или из пакета vitastor-client-dev) - Установите заголовки клиентской библиотеки Vitastor (из исходников или из пакета vitastor-client-dev)
- Возьмите соответствующий патч из `patches/qemu-*-vitastor.patch` и примените его к исходникам QEMU - Возьмите соответствующий патч из `patches/qemu-*-vitastor.patch` и примените его к исходникам QEMU
- Скопируйте [src/client/qemu_driver.c](../../src/client/qemu_driver.c) в директорию исходников QEMU как `block/vitastor.c` - Скопируйте [src/qemu_driver.c](../../src/qemu_driver.c) в директорию исходников QEMU как `block/block-vitastor.c`
- Соберите QEMU как обычно - Соберите QEMU как обычно
Однако в целях отладки драйвер также можно собирать отдельно от QEMU. Для этого: Однако в целях отладки драйвер также можно собирать отдельно от QEMU. Для этого:
@ -60,7 +60,7 @@ cmake .. && make -j8 install
* Для QEMU 2.0+: `<qemu>/qapi-types.h` &rarr; `<vitastor>/qemu/b/qemu/qapi-types.h` * Для QEMU 2.0+: `<qemu>/qapi-types.h` &rarr; `<vitastor>/qemu/b/qemu/qapi-types.h`
- `config-host.h` и `qapi` нужны, т.к. в них содержатся автогенерируемые заголовки - `config-host.h` и `qapi` нужны, т.к. в них содержатся автогенерируемые заголовки
- Сконфигурируйте cmake Vitastor с `WITH_QEMU=yes` (`cmake .. -DWITH_QEMU=yes`) и, если вы - Сконфигурируйте cmake Vitastor с `WITH_QEMU=yes` (`cmake .. -DWITH_QEMU=yes`) и, если вы
используете RHEL-подобный дистрибутив, также с `QEMU_PLUGINDIR=qemu-kvm`. используете RHEL-подобый дистрибутив, также с `QEMU_PLUGINDIR=qemu-kvm`.
- После этого в процессе сборки Vitastor также будет собираться подходящий для вашей - После этого в процессе сборки Vitastor также будет собираться подходящий для вашей
версии QEMU `block-vitastor.so`. версии QEMU `block-vitastor.so`.
- Таким образом можно использовать драйвер даже с немодифицированным QEMU, но в этом случае - Таким образом можно использовать драйвер даже с немодифицированным QEMU, но в этом случае

View File

@ -6,150 +6,19 @@
# Architecture # Architecture
- [Server-side components](#server-side-components)
- [Basic concepts](#basic-concepts) - [Basic concepts](#basic-concepts)
- [Client-side components](#client-side-components)
- [Additional utilities](#additional-utilities)
- [Overall read/write process](#overall-read-write-process)
- [Nuances of request handling](#nuances-of-request-handling)
- [Similarities to Ceph](#similarities-to-ceph) - [Similarities to Ceph](#similarities-to-ceph)
- [Differences from Ceph](#differences-from-ceph) - [Differences from Ceph](#differences-from-ceph)
- [Implementation Principles](#implementation-principles) - [Implementation Principles](#implementation-principles)
## Server-side components
- **OSD** (Object Storage Daemon) is a process that directly works with the disk, stores data
and serves read/write requests. One OSD serves one disk (or one partition). OSDs talk to etcd
and to each other — they receive cluster state from etcd, and send read/write requests for
secondary copies of data to other OSDs.
- **etcd** — clustered key/value database, used as a reliable storage for configuration
and high-level cluster state. Etcd is the component that prevents splitbrain in the cluster.
Data blocks are not stored in etcd, etcd doesn't participate in data write or read path.
- **Монитор** — a separate node.js based daemon which monitors the cluster, calculates
required configuration changes and saves them to etcd, thus commanding OSDs to apply these
changes. Monitor also aggregates cluster statistics. OSD don't talk to monitor, monitor
only sends and receives data from etcd.
## Basic concepts ## Basic concepts
- **Pool** is a container for data that has equal redundancy scheme and disk placement rules. - OSD (Object Storage Daemon) is a process that stores data and serves read/write requests.
- **PG (Placement Group)** is a "shard" of the cluster, subdivision unit that has its own - PG (Placement Group) is a "shard" of the cluster, group of data stored on one set of replicas.
set of OSDs for data storage. - Pool is a container for data that has equal redundancy scheme and placement rules.
- **Failure Domain** is a group of OSDs, from the simultaneous failure of which you are - Monitor is a separate daemon that watches cluster state and handles failures.
protected by Vitastor. Default failure domain is "host" (server), but you choose a - Failure Domain is a group of OSDs that you allow to fail. It's "host" by default.
larger (for example, a rack of servers) or smaller (a single drive) failure domain - Placement Tree groups OSDs in a hierarchy to later split them into Failure Domains.
for every pool.
- **Placement Tree** (similar to Ceph CRUSH Tree) groups OSDs in a hierarchy to later
split them into Failure Domains.
## Client-side components
- **Client library** encapsulates client I/O logic. Client library connects to etcd and to all OSDs,
receives cluster state from etcd, sends read and write requests directly to all OSDs. Due
to the symmetric distributed architecture, all data blocks (each 128 KB by default) are placed
to different OSDs, but clients always know where each data block is stored and connect directly
to the right OSD.
All other client-side components are based on the client library:
- **[vitastor-cli](../usage/cli.en.md)** — command-line utility for cluster management.
Allows to view cluster state, manage pools and images, i.e. create, modify and remove
virtual disks, their snapshots and clones.
- **[QEMU driver](../usage/qemu.en.md)** — pluggable QEMU module allowing QEMU/KVM virtual
machines work with virtual Vitastor disks directly from userspace through the client library,
without the need to attach disks as kernel block devices. However, if you want to attach
disks, you can also do that with the same driver and [VDUSE](../usage/qemu.en.md#vduse).
- **[vitastor-nbd](../usage/nbd.en.md)** — utility that allows to attach Vitastor disks as
kernel block devices using NBD (Network Block Device), which works more like "BUSE"
(Block Device In Userspace). Vitastor doesn't have Linux kernel modules for the same task
(at least by now). NBD is an older, non-recommended way to attach disks — you should use
VDUSE whenever you can.
- **[CSI driver](../installation/kubernetes.en.md)** — driver for attaching Vitastor images
as Kubernetes persistent volumes. Works through VDUSE (when available) or NBD — images are
attached as kernel block devices and mounted into containers.
- **Drivers for Proxmox, OpenStack and so on** — pluggable modules for corresponding systems,
allowing to use Vitastor as storage in them.
- **[vitastor-nfs](../usage/nfs.en.md)** — NFS 3.0 server allowing export of two file system variants:
the first is a simplified pseudo-FS for file-based access to Vitastor block images (for non-QEMU
hypervisors with NFS support), the second is **VitastorFS**, full-featured clustered POSIX FS.
Both variants support parallel access from multiple vitastor-nfs servers. In fact, you are
not required to setup separate NFS servers at all and use vitastor-nfs mount command on every
client node — it starts the NFS server and mounts the FS locally.
- **[fio driver](../usage/fio.en.md)** — pluggable module for fio disk benchmarking tool for
running performance tests on your Vitastor cluster.
- **vitastor-kv** — client for a key-value DB working over shared block volumes (usual
vitastor images). VitastorFS metadata is stored in vitastor-kv.
## Additional utilities
- **vitastor-disk** — a Vitastor OSD disk management tool. You can create, remove,
resize and move OSD partitions with it.
## Overall read/write process
- Vitastor stores virtual disks, also named "images" or "inodes".
- Each image is stored in some pool. Pool specifies storage parameters such as redundancy
scheme (replication or EC — erasure codes, i.e. error correction codes), failure domain
and restrictions on OSD selection for image data placement. See [Pool configuration](../config/pool.en.md) for details.
- Each image is split into objects/blocks of fixed size, equal to [block_size](../config/layout-cluster.en.md#block_size)
(128 KB by default), multiplied by data part count for EC or 1 for replicas. That is,
if a pool uses EC 4+2 coding scheme (4 data parts + 2 parity parts), then, with the
default block_size, images are split into 512 KB objects.
- Client read/write requests are split into parts at object boundaries.
- Each object is mapped to a PG number it belongs to, by simply taking a remainder of
division of its offset by PG count of the image's pool.
- Client reads primary OSD for all PGs from etcd. Primary OSD for each PG is assigned
by the monitor during cluster operation, along with the full PG OSD set.
- If not already connected, client connects to primary OSDs of all PGs involved in a
read/write request and sends parts of the request to them.
- If a primary OSD is unavailable, client retries connection attempts indefinitely
either until it becomes available or until the monitor assigns another OSD as primary
for that PG.
- Client also retries requests if the primary OSD replies with error code EPIPE, meaning
that the PG is inactive at this OSD at the moment - for example, when the primary OSD
is switched, or if the primary OSD itself loses connection to replicas during request
handling.
- Primary OSD determines where the parts of the object are stored. By default, all objects
are assumed to be stored at the target OSD set of a PG, but some of them may be present
at a different OSD set if they are degraded or moved, or if the data rebalancing process
is active. OSDs doesn't do any network requests, if calculates locations of all objects
during PG activation and stores it in memory.
- Primary OSD handles the request locally when it can - for example, when it's a read
from a replicated pool or when it's a read from a EC pool involving only one data part
stored on the OSD's local disk.
- When a request requires reads or writes to additional OSDs, primary OSD uses already
established connections to secondary OSDs of the PG to execute these requests. This happens
in parallel to local disk operations. All such connections are guaranteed to be already
established when the PG is active, and if any of them is dropped, PG is restarted and
all current read/write operations to it fail with EPIPE error and are retried by clients.
- After completing all secondary read/write requests, primary OSD sends the response to
the client.
### Nuances of request handling
- If a pool uses erasure codes and some of the OSDs are unavailable, primary OSDs recover
data from the remaining parts during read.
- Each object has a version number. During write, primary OSD first determines the current
version of the object. As primary OSD usually stores the object or its part itself, most
of the time version is read from the memory of the OSD itself. However, if primary OSD
doesn't contain parts of the object, it requests the version number from a secondary OSD
which has that part. Such request still doesn't involve reading from the disk though,
because object metadata, including version number, is always stored in OSD memory.
- If a pool uses erasure codes, partial writes of an object require reading other parts of
it from secondary OSDs or from the local disk of the primary OSD itself. This is called
"read-modify-write" process.
- If a pool uses erasure codes, two-phase write process is used to get rid of the Write Hole
problem: first a new version of object parts is written to all secondary OSDs without
removing the previous version, and then, after receiving successful write confirmations
from all OSDs, new version is committed and the old one is allowed to be removed.
- In a pool doesn't use immediate_commit mode, then write requests sent by clients aren't
treated as committed to physical media instantly. Clients have to send separate type of
requests (SYNC) to commit changes, and before it isn't sent, new versions of data are
allowed to be lost if some OSDs die. Thus, when immediate_commit is disabled, clients
store copies of all write requests in memory and repeat them from there when the
connection to primary OSD is lost. This in-memory copy is removed after a successful
SYNC, and to prevent excessive memory usage, clients also do an automatic SYNC
every [client_dirty_limit](../config/network.en.md#client_dirty_limit) written bytes.
## Similarities to Ceph ## Similarities to Ceph
@ -218,5 +87,5 @@ All other client-side components are based on the client library:
- Deleting images in a degraded cluster may currently lead to objects reappearing - Deleting images in a degraded cluster may currently lead to objects reappearing
after dead OSDs come back, and in case of erasure-coded pools, they may even after dead OSDs come back, and in case of erasure-coded pools, they may even
reappear as incomplete. Just repeat the removal request again in this case. reappear as incomplete. Just repeat the removal request again in this case.
This problem will be fixed in the future, along with the metadata disk storage This problem will be fixed in the nearest future, the fix is already implemented
format update. in the "epoch-deletions" branch.

View File

@ -11,7 +11,6 @@
- [Серверные компоненты](#серверные-компоненты) - [Серверные компоненты](#серверные-компоненты)
- [Базовые понятия](#базовые-понятия) - [Базовые понятия](#базовые-понятия)
- [Клиентские компоненты](#клиентские-компоненты) - [Клиентские компоненты](#клиентские-компоненты)
- [Дополнительные утилиты](#дополнительные-утилиты)
- [Общий процесс записи и чтения](#общий-процесс-записи-и-чтения) - [Общий процесс записи и чтения](#общий-процесс-записи-и-чтения)
- [Особенности обработки запросов](#особенности-обработки-запросов) - [Особенности обработки запросов](#особенности-обработки-запросов)
- [Схожесть с Ceph](#схожесть-с-ceph) - [Схожесть с Ceph](#схожесть-с-ceph)
@ -24,8 +23,8 @@
Один OSD управляет одним диском (или разделом). OSD общаются с etcd и друг с другом — от etcd они Один OSD управляет одним диском (или разделом). OSD общаются с etcd и друг с другом — от etcd они
получают состояние кластера, а друг другу передают запросы записи и чтения вторичных копий данных. получают состояние кластера, а друг другу передают запросы записи и чтения вторичных копий данных.
- **etcd** — кластерная key/value база данных, используется для хранения настроек и верхнеуровневого - **etcd** — кластерная key/value база данных, используется для хранения настроек и верхнеуровневого
состояния кластера, а также предотвращения разделения сознания (splitbrain). Блоки данных в etcd не состояния кластера, а также предотвращения разделения сознания. Блоки данных в etcd не хранятся,
хранятся, в обработке клиентских запросов чтения и записи etcd не участвует. в обработке клиентских запросов чтения и записи etcd не участвует.
- **Монитор** — отдельный демон на node.js, рассчитывающий необходимые изменения в конфигурацию - **Монитор** — отдельный демон на node.js, рассчитывающий необходимые изменения в конфигурацию
кластера, сохраняющий эту информацию в etcd и таким образом командующий OSD применить эти изменения. кластера, сохраняющий эту информацию в etcd и таким образом командующий OSD применить эти изменения.
Также агрегирует статистику. Контактирует только с etcd, OSD с монитором не общаются. Также агрегирует статистику. Контактирует только с etcd, OSD с монитором не общаются.
@ -35,55 +34,39 @@
- **Пул (Pool)** — контейнер для данных, имеющих одну и ту же схему избыточности и правила распределения по OSD. - **Пул (Pool)** — контейнер для данных, имеющих одну и ту же схему избыточности и правила распределения по OSD.
- **PG (Placement Group)** — "шард", единица деления пулов в кластере, которой назначается свой набор - **PG (Placement Group)** — "шард", единица деления пулов в кластере, которой назначается свой набор
OSD для хранения данных (копий или частей объектов). OSD для хранения данных (копий или частей объектов).
- **Домен отказа (Failure Domain)** — группа OSD, от одновременного падения которых должен защищать - **Домен отказа (Failure Domain)** — группа OSD, одновременное падение которых рассматривается
Vitastor. По умолчанию домен отказа — "host" (сервер), но вы можете установить для пула как больший как вероятное. По умолчанию это "host" (сервер).
домен отказа (например, стойку серверов), так и меньший (например, отдельный диск).
- **Дерево распределения** (Placement Tree, в Ceph CRUSH Tree) — иерархическая группировка OSD - **Дерево распределения** (Placement Tree, в Ceph CRUSH Tree) — иерархическая группировка OSD
в узлы, которые далее можно использовать как домены отказа. в узлы, которые далее можно использовать как домены отказа.
## Клиентские компоненты ## Клиентские компоненты
- **Клиентская библиотека** — инкапсулирует логику на стороне клиента. Соединяется с etcd и со всеми OSD, - **Клиентская библиотека** — инкапсулирует логику на стороне клиента. Соединяются с etcd и со всеми OSD,
от etcd получает состояние кластера, команды чтения и записи отправляет на все OSD напрямую. от etcd получают состояние кластера, команды чтения и записи отправляют на все OSD напрямую.
В силу архитектуры все отдельные блоки данных (по умолчанию по 128 КБ) располагается на разных В силу архитектуры все отдельные блоки данных (по умолчанию по 128 КБ) располагается на разных
OSD, но клиент устроен так, что всегда точно знает, к какому OSD обращаться, и подключается OSD, но клиент устроен так, что всегда точно знает, к какому OSD обращаться, и подключается
к нему напрямую. к нему напрямую.
На базе клиентской библиотеки реализованы все остальные клиенты: На базе клиентской библиотеки реализованы все остальные клиенты:
- **[vitastor-cli](../usage/cli.ru.md)** — утилита командной строки для управления кластером. - **vitastor-cli** — утилита командной строки для управления кластером. В данный момент позволяет
Позволяет просматривать общее состояние кластера, управлять пулами и образами — то есть просматривать общее состояние кластера и управлять образами — т.е. создавать, менять и удалять
создавать, менять и удалять виртуальные диски, их снимки и клоны. виртуальные диски, их снимки и клоны.
- **[Драйвер QEMU](../usage/qemu.ru.md)** — подключаемый модуль QEMU, позволяющий QEMU/KVM - **Драйвер QEMU** — подключаемый модуль QEMU, позволяющий QEMU/KVM виртуальным машинам работать
виртуальным машинам работать с виртуальными дисками Vitastor напрямую из пространства пользователя с виртуальными дисками Vitastor напрямую из пространства пользователя с помощью клиентской
с помощью клиентской библиотеки, без необходимости подключения дисков в виде блочных устройств библиотеки, без необходимости отображения дисков в виде блочных устройств.
Linux. Если, однако, вы хотите подключать диски в виде блочных устройств, то вы тоже можете - **vitastor-nbd** — утилита, позволяющая монтировать образы Vitastor в виде блочных устройств
сделать это с помощью того же самого драйвера и [VDUSE](../usage/qemu.ru.md#vduse). с помощью NBD (Network Block Device), на самом деле скорее работающего как "BUSE"
- **[vitastor-nbd](../usage/nbd.ru.md)** — утилита, позволяющая монтировать образы Vitastor (Block Device In Userspace). Модуля ядра Linux для выполнения той же задачи в Vitastor нет
в виде блочных устройств с помощью NBD (Network Block Device), на самом деле скорее работающего (по крайней мере, пока).
как "BUSE" (Block Device In Userspace). Модуля ядра Linux для выполнения той же задачи в - **CSI драйвер** — драйвер для подключения Vitastor-образов в виде персистентных томов (PV) Kubernetes.
Vitastor нет (по крайней мере, пока). NBD — более старый и нерекомендуемый способ подключения Работает через vitastor-nbd — образы отражаются в виде блочных устройств и монтируются
дисков — вам следует использовать VDUSE всегда, когда это возможно. в контейнеры.
- **[CSI драйвер](../installation/kubernetes.ru.md)** — драйвер для подключения Vitastor-образов
в виде персистентных томов (PV) Kubernetes. Работает через VDUSE (если доступно) или через
NBD — образы отражаются в виде блочных устройств и монтируются в контейнеры.
- **Драйвера Proxmox, OpenStack и т.п.** — подключаемые модули для соответствующих систем, - **Драйвера Proxmox, OpenStack и т.п.** — подключаемые модули для соответствующих систем,
позволяющие использовать Vitastor как хранилище в оных. позволяющие использовать Vitastor как хранилище в оных.
- **[vitastor-nfs](../usage/nfs.ru.md)** — NFS 3.0 сервер, предоставляющий два варианта файловой системы: - **vitastor-nfs** — утилита, предоставляющая файловый доступ к образам в кластере Vitastor
первая — упрощённая для файлового доступа к блочным образам (для не-QEMU гипервизоров, поддерживающих NFS), по протоколу NFS 3.0. Предназначена для гипервизоров, не основанных на QEMU и Linux, но при
вторая — VitastorFS, полноценная кластерная POSIX ФС. Оба варианта поддерживают параллельный этом поддерживающих NFS.
доступ с нескольких vitastor-nfs серверов. На самом деле можно вообще не выделять
отдельные NFS-серверы, а вместо этого использовать команду vitastor-nfs mount, запускающую
NFS-сервер прямо на клиентской машине и монтирующую ФС локально.
- **[Драйвер fio](../usage/fio.ru.md)** — подключаемый модуль для утилиты тестирования
производительности дисков fio, позволяющий тестировать Vitastor-кластеры.
- **vitastor-kv** — клиент для key-value базы данных, работающей поверх разделяемого блочного
образа (обычного блочного образа vitastor). Метаданные VitastorFS хранятся именно в vitastor-kv.
## Дополнительные утилиты
- **vitastor-disk** — утилита для разметки дисков под Vitastor OSD. С её помощью можно
создавать, удалять, менять размеры или перемещать разделы OSD.
## Общий процесс записи и чтения ## Общий процесс записи и чтения
@ -114,22 +97,16 @@
находиться на других OSD, если эти объекты деградированы или перемещены, или идёт процесс находиться на других OSD, если эти объекты деградированы или перемещены, или идёт процесс
ребаланса. Запросы для проверки по сети не отправляются, информация о местоположении всех ребаланса. Запросы для проверки по сети не отправляются, информация о местоположении всех
объектов рассчитывается первичным OSD при активации PG и хранится в памяти. объектов рассчитывается первичным OSD при активации PG и хранится в памяти.
- Когда это возможно, первичный OSD обрабатывает запрос локально. Например, так происходит - Первичный OSD соединяется (если ещё не соединён) с вторичными OSD, на которых располагаются
при чтениях объектов из пулов с репликацией или при чтении из EC пула, затрагивающего части объекта, и отправляет им запросы чтения/записи, а также читает/пишет из/в своё локальное
только часть, хранимую на диске самого первичного OSD. хранилище, если сам входит в набор.
- Когда запрос требует записи или чтения с вторичных OSD, первичный OSD использует заранее
установленные соединения с ними для выполнения этих запросов. Это происходит параллельно
локальным операциям чтения/записи с диска самого OSD. Так как соединения к вторичным OSD PG
устанавливаются при её запуске, то они уже гарантированно установлены, когда PG активна,
и если любое из этих соединений отключается, PG перезапускается, а все текущие запросы чтения
и записи в неё завершаются с ошибкой EPIPE, после чего повторяются клиентами.
- После завершения всех вторичных операций чтения/записи первичный OSD отправляет ответ клиенту. - После завершения всех вторичных операций чтения/записи первичный OSD отправляет ответ клиенту.
### Особенности обработки запросов ### Особенности обработки запросов
- Если в пуле используются коды коррекции ошибок и при этом часть OSD недоступна, первичный - Если в пуле используются коды коррекции ошибок и при этом часть OSD недоступна, первичный
OSD при чтении восстанавливает данные из оставшихся частей. OSD при чтении восстанавливает данные из оставшихся частей.
- Каждый объект имеет номер версии. При записи объекта первичный OSD сначала получает номер - Каждый объект имеет номер версии. При записи объекта первичный OSD сначала читает из номер
версии объекта. Так как первичный OSD обычно сам хранит копию или часть объекта, номер версии объекта. Так как первичный OSD обычно сам хранит копию или часть объекта, номер
версии обычно читается из памяти самого OSD. Однако, если ни одна часть обновляемого объекта версии обычно читается из памяти самого OSD. Однако, если ни одна часть обновляемого объекта
не находится на первичном OSD, для получения номера версии он обращается к одному из вторичных не находится на первичном OSD, для получения номера версии он обращается к одному из вторичных
@ -137,20 +114,20 @@
так как метаданные объектов, включая номер версии, все OSD хранят в памяти. так как метаданные объектов, включая номер версии, все OSD хранят в памяти.
- Если в пуле используются коды коррекции ошибок, перед частичной записью объекта для вычисления - Если в пуле используются коды коррекции ошибок, перед частичной записью объекта для вычисления
чётности зачастую требуется чтение частей объекта с вторичных OSD или с локального диска чётности зачастую требуется чтение частей объекта с вторичных OSD или с локального диска
самого первичного OSD. Это называется процессом "чтение-модификация-запись" (read-modify-write). самого первичного OSD.
- Если в пуле используются коды коррекции ошибок, для закрытия Write Hole применяется - Также, если в пуле используются коды коррекции ошибок, для закрытия Write Hole применяется
двухфазный алгоритм записи: сначала на все вторичные OSD записывается новая версия частей двухфазный алгоритм записи: сначала на все вторичные OSD записывается новая версия частей
объекта, но при этом старая версия не удаляется, а потом, после получения подтверждения объекта, но при этом старая версия не удаляется, а потом, после получения подтверждения
успешной записи от всех вторичных OSD, новая версия фиксируется и разрешается удаление старой. успешной записи от всех вторичных OSD, новая версия фиксируется и разрешается удаление старой.
- Если в пуле не включён режим immediate_commit, то запросы записи, отправляемые клиентами, - Если в кластере не включён режим immediate_commit, то запросы записи, отправляемые клиентами,
не считаются зафиксированными на физических накопителях сразу. Для фиксации данных клиенты не считаются зафиксированными на физических накопителях сразу. Для фиксации данных клиенты
должны отдельно отправлять запросы SYNC (отдельный от чтения и записи вид запроса), должны отдельно отправлять запросы SYNC (отдельный от чтения и записи вид запроса),
а пока такой запрос не отправлен, считается, что записанные данные могут исчезнуть, а пока такой запрос не отправлен, считается, что записанные данные могут исчезнуть,
если соответствующий OSD упадёт. Поэтому, когда режим immediate_commit отключён, все если соответствующий OSD упадёт. Поэтому, когда режим immediate_commit отключён, все
запросы записи клиенты копируют в памяти и при потере соединения и повторном соединении запросы записи клиенты копируют в памяти и при потере соединения и повторном соединении
с OSD повторяют из памяти. Скопированные в память данные удаляются при успешном SYNC, с OSD повторяют из памяти. Скопированные в память данные удаляются при успешном fsync,
а чтобы хранение этих данных не приводило к чрезмерному потреблению памяти, клиенты а чтобы хранение этих данных не приводило к чрезмерному потреблению памяти, клиенты
автоматически выполняют SYNC каждые [client_dirty_limit](../config/network.ru.md#client_dirty_limit) автоматически выполняют fsync каждые [client_dirty_limit](../config/network.ru.md#client_dirty_limit)
записанных байт. записанных байт.
## Схожесть с Ceph ## Схожесть с Ceph
@ -227,5 +204,5 @@
- Удаление образов в деградированном кластере может в данный момент приводить к повторному - Удаление образов в деградированном кластере может в данный момент приводить к повторному
"появлению" удалённых объектов после поднятия отключённых OSD, причём в случае EC-пулов, "появлению" удалённых объектов после поднятия отключённых OSD, причём в случае EC-пулов,
объекты могут появиться в виде "неполных". Если вы столкнётесь с такой ситуацией, просто объекты могут появиться в виде "неполных". Если вы столкнётесь с такой ситуацией, просто
повторите запрос удаления. Данная проблема будет исправлена в будущем вместе с обновлением повторите запрос удаления. Исправление этой проблемы уже реализовано в ветке "epoch-deletions"
дискового формата хранения метаданных. и вскоре будет включено в релиз.

View File

@ -13,7 +13,7 @@
## Server-side features ## Server-side features
- Basic part: highly-available block storage with symmetric clustering and no SPOF - Basic part: highly-available block storage with symmetric clustering and no SPOF
- [Performance](../performance/bench2.en.md) ;-D - [Performance](../performance/comparison1.en.md) ;-D
- [Multiple redundancy schemes](../config/pool.en.md#scheme): Replication, XOR n+1, Reed-Solomon erasure codes - [Multiple redundancy schemes](../config/pool.en.md#scheme): Replication, XOR n+1, Reed-Solomon erasure codes
based on jerasure and ISA-L libraries with any number of data and parity drives in a group based on jerasure and ISA-L libraries with any number of data and parity drives in a group
- Configuration via simple JSON data structures in etcd (parameters, pools and images) - Configuration via simple JSON data structures in etcd (parameters, pools and images)
@ -29,20 +29,10 @@
- Snapshots and copy-on-write image clones - Snapshots and copy-on-write image clones
- [Write throttling to smooth random write workloads in SSD+HDD configurations](../config/osd.en.md#throttle_small_writes) - [Write throttling to smooth random write workloads in SSD+HDD configurations](../config/osd.en.md#throttle_small_writes)
- [RDMA/RoCEv2 support via libibverbs](../config/network.en.md#rdma_device) - [RDMA/RoCEv2 support via libibverbs](../config/network.en.md#rdma_device)
- [Scrubbing](../config/osd.en.md#auto_scrub) (verification of copies) - [Scrubbing without checksums](../config/osd.en.md#auto_scrub) (verification of copies)
- [Checksums](../config/layout-osd.en.md#data_csum_type)
- [Client write-back cache](../config/client.en.md#client_enable_writeback)
- [Intelligent recovery auto-tuning](../config/osd.en.md#recovery_tune_interval)
- [Clustered file system](../usage/nfs.en.md#vitastorfs)
- [Experimental internal etcd replacement - antietcd](../config/monitor.en.md#use_antietcd)
- [Built-in Prometheus metric exporter](../config/monitor.en.md#enable_prometheus)
## Plugins and tools ## Plugins and tools
- [Proxmox storage plugin and packages](../installation/proxmox.en.md)
- [OpenNebula storage plugin](../installation/opennebula.en.md)
- [CSI plugin for Kubernetes](../installation/kubernetes.en.md)
- [OpenStack support: Cinder driver, Nova and libvirt patches](../installation/openstack.en.md)
- [Debian and CentOS packages](../installation/packages.en.md) - [Debian and CentOS packages](../installation/packages.en.md)
- [Image management CLI (vitastor-cli)](../usage/cli.en.md) - [Image management CLI (vitastor-cli)](../usage/cli.en.md)
- [Disk management CLI (vitastor-disk)](../usage/disk.en.md) - [Disk management CLI (vitastor-disk)](../usage/disk.en.md)
@ -50,19 +40,23 @@
- [Native QEMU driver](../usage/qemu.en.md) - [Native QEMU driver](../usage/qemu.en.md)
- [Loadable fio engine for benchmarks](../usage/fio.en.md) - [Loadable fio engine for benchmarks](../usage/fio.en.md)
- [NBD proxy for kernel mounts](../usage/nbd.en.md) - [NBD proxy for kernel mounts](../usage/nbd.en.md)
- [Simplified NFS proxy for file-based image access emulation (suitable for VMWare)](../usage/nfs.en.md#pseudo-fs) - [CSI plugin for Kubernetes](../installation/kubernetes.en.md)
- [OpenStack support: Cinder driver, Nova and libvirt patches](../installation/openstack.en.md)
- [Proxmox storage plugin and packages](../installation/proxmox.en.md)
- [Simplified NFS proxy for file-based image access emulation (suitable for VMWare)](../usage/nfs.en.md)
## Roadmap ## Roadmap
The following features are planned for the future: The following features are planned for the future:
- Control plane optimisation
- Other administrative tools - Other administrative tools
- Web GUI - Web GUI
- iSCSI and NVMeoF gateways - OpenNebula plugin
- iSCSI proxy
- Multi-threaded client - Multi-threaded client
- Faster failover - Faster failover
- S3 - Checksums
- Tiered storage (SSD caching) - Tiered storage (SSD caching)
- NVDIMM support - NVDIMM support
- Compression (possibly) - Compression (possibly)
- Read caching using system page cache (possibly)

View File

@ -13,7 +13,7 @@
## Серверные функции ## Серверные функции
- Базовая часть - надёжное кластерное блочное хранилище без единой точки отказа - Базовая часть - надёжное кластерное блочное хранилище без единой точки отказа
- [Производительность](../performance/bench2.ru.md) ;-D - [Производительность](../performance/comparison1.ru.md) ;-D
- [Несколько схем отказоустойчивости](../config/pool.ru.md#scheme): репликация, XOR n+1 (1 диск чётности), коды коррекции ошибок - [Несколько схем отказоустойчивости](../config/pool.ru.md#scheme): репликация, XOR n+1 (1 диск чётности), коды коррекции ошибок
Рида-Соломона на основе библиотек jerasure и ISA-L с любым числом дисков данных и чётности в группе Рида-Соломона на основе библиотек jerasure и ISA-L с любым числом дисков данных и чётности в группе
- Конфигурация через простые человекочитаемые JSON-структуры в etcd - Конфигурация через простые человекочитаемые JSON-структуры в etcd
@ -31,20 +31,10 @@
- Снапшоты и copy-on-write клоны - Снапшоты и copy-on-write клоны
- [Сглаживание производительности случайной записи в SSD+HDD конфигурациях](../config/osd.ru.md#throttle_small_writes) - [Сглаживание производительности случайной записи в SSD+HDD конфигурациях](../config/osd.ru.md#throttle_small_writes)
- [Поддержка RDMA/RoCEv2 через libibverbs](../config/network.ru.md#rdma_device) - [Поддержка RDMA/RoCEv2 через libibverbs](../config/network.ru.md#rdma_device)
- [Фоновая проверка целостности](../config/osd.ru.md#auto_scrub) (сверка копий) - [Фоновая проверка целостности без контрольных сумм](../config/osd.ru.md#auto_scrub) (сверка копий)
- [Контрольные суммы](../config/layout-osd.ru.md#data_csum_type)
- [Буферизация записи на стороне клиента](../config/client.ru.md#client_enable_writeback)
- [Интеллектуальная автоподстройка скорости восстановления](../config/osd.ru.md#recovery_tune_interval)
- [Кластерная файловая система](../usage/nfs.ru.md#vitastorfs)
- [Экспериментальная встроенная замена etcd - antietcd](../config/monitor.ru.md#use_antietcd)
- [Встроенный Prometheus-экспортер метрик](../config/monitor.ru.md#enable_prometheus)
## Драйверы и инструменты ## Драйверы и инструменты
- [Плагин для Proxmox](../installation/proxmox.ru.md)
- [Плагин для OpenNebula](../installation/opennebula.ru.md)
- [CSI-плагин для Kubernetes](../installation/kubernetes.ru.md)
- [Базовая поддержка OpenStack: драйвер Cinder, патчи для Nova и libvirt](../installation/openstack.ru.md)
- [Пакеты для Debian и CentOS](../installation/packages.ru.md) - [Пакеты для Debian и CentOS](../installation/packages.ru.md)
- [Консольный интерфейс управления образами (vitastor-cli)](../usage/cli.ru.md) - [Консольный интерфейс управления образами (vitastor-cli)](../usage/cli.ru.md)
- [Инструмент управления дисками (vitastor-disk)](../usage/disk.ru.md) - [Инструмент управления дисками (vitastor-disk)](../usage/disk.ru.md)
@ -52,17 +42,20 @@
- [Драйвер диска для QEMU](../usage/qemu.ru.md) - [Драйвер диска для QEMU](../usage/qemu.ru.md)
- [Драйвер диска для утилиты тестирования производительности fio](../usage/fio.ru.md) - [Драйвер диска для утилиты тестирования производительности fio](../usage/fio.ru.md)
- [NBD-прокси для монтирования образов ядром](../usage/nbd.ru.md) ("блочное устройство в режиме пользователя") - [NBD-прокси для монтирования образов ядром](../usage/nbd.ru.md) ("блочное устройство в режиме пользователя")
- [Упрощённая NFS-прокси для эмуляции файлового доступа к образам (подходит для VMWare)](../usage/nfs.ru.md#псевдо-фс) - [CSI-плагин для Kubernetes](../installation/kubernetes.ru.md)
- [Базовая поддержка OpenStack: драйвер Cinder, патчи для Nova и libvirt](../installation/openstack.ru.md)
- [Плагин для Proxmox](../installation/proxmox.ru.md)
- [Упрощённая NFS-прокси для эмуляции файлового доступа к образам (подходит для VMWare)](../usage/nfs.ru.md)
## Планы развития ## Планы развития
- Оптимизация слоя управления
- Другие инструменты администрирования - Другие инструменты администрирования
- Web-интерфейс - Web-интерфейс
- iSCSI и NVMeoF прокси - Плагин для OpenNebula
- iSCSI-прокси
- Многопоточный клиент - Многопоточный клиент
- Более быстрое переключение при отказах - Более быстрое переключение при отказах
- S3 - Контрольные суммы
- Поддержка SSD-кэширования (tiered storage) - Поддержка SSD-кэширования (tiered storage)
- Поддержка NVDIMM - Поддержка NVDIMM
- Возможно, сжатие - Возможно, сжатие

View File

@ -7,34 +7,22 @@
# Quick Start # Quick Start
- [Preparation](#preparation) - [Preparation](#preparation)
- [Recommended drives](#recommended-drives)
- [Configure monitors](#configure-monitors) - [Configure monitors](#configure-monitors)
- [Configure OSDs](#configure-osds) - [Configure OSDs](#configure-osds)
- [Create a pool](#create-a-pool) - [Create a pool](#create-a-pool)
- [Check cluster status](#check-cluster-status) - [Check cluster status](#check-cluster-status)
- [Create an image](#create-an-image) - [Create an image](#create-an-image)
- [Install plugins](#install-plugins) - [Install plugins](#install-plugins)
- [Create VitastorFS](#create-vitastorfs)
## Preparation ## Preparation
- Get some SATA or NVMe SSDs with capacitors (server-grade drives). You can use desktop SSDs - Get some SATA or NVMe SSDs with capacitors (server-grade drives). You can use desktop SSDs
with lazy fsync, but prepare for inferior single-thread latency. Read more about capacitors with lazy fsync, but prepare for inferior single-thread latency. Read more about capacitors
[here](../config/layout-cluster.en.md#immediate_commit). [here](../config/layout-cluster.en.md#immediate_commit).
- If you want to use HDDs, get modern HDDs with Media Cache or SSD Cache: HGST Ultrastar,
Toshiba MG, Seagate EXOS or something similar. If your drives don't have such cache then
you also need small SSDs for journal and metadata (even 2 GB per 1 TB of HDD space is enough).
- Get a fast network (at least 10 Gbit/s). Something like Mellanox ConnectX-4 with RoCEv2 is ideal. - Get a fast network (at least 10 Gbit/s). Something like Mellanox ConnectX-4 with RoCEv2 is ideal.
- Disable CPU powersaving: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`. - Disable CPU powersaving: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`.
- [Install Vitastor packages](../installation/packages.en.md). - [Install Vitastor packages](../installation/packages.en.md).
## Recommended drives
- SATA SSD: Micron 5100/5200/5300/5400, Samsung PM863/PM883/PM893, Intel D3-S4510/4520/4610/4620, Kingston DC500M
- NVMe: Micron 9100/9200/9300/9400, Micron 7300/7450, Samsung PM983/PM9A3, Samsung PM1723/1735/1743,
Intel DC-P3700/P4500/P4600, Intel D5-P4320, Intel D7-P5500/P5600, Intel Optane, Kingston DC1000B/DC1500M
- HDD: HGST Ultrastar, Toshiba MG, Seagate EXOS
## Configure monitors ## Configure monitors
On the monitor hosts: On the monitor hosts:
@ -57,10 +45,9 @@ On the monitor hosts:
} }
``` ```
- Initialize OSDs: - Initialize OSDs:
- SSD-only or HDD-only: `vitastor-disk prepare /dev/sdXXX [/dev/sdYYY ...]`. - SSD-only: `vitastor-disk prepare /dev/sdXXX [/dev/sdYYY ...]`. You can add
Add `--disable_data_fsync off` to leave disk write cache enabled if you use `--disable_data_fsync off` to leave disk cache enabled if you use desktop
desktop SSDs without capacitors. Do NOT add `--disable_data_fsync off` if you SSDs without capacitors.
use HDDs or SSD+HDD.
- Hybrid, SSD+HDD: `vitastor-disk prepare --hybrid /dev/sdXXX [/dev/sdYYY ...]`. - Hybrid, SSD+HDD: `vitastor-disk prepare --hybrid /dev/sdXXX [/dev/sdYYY ...]`.
Pass all your devices (HDD and SSD) to this script &mdash; it will partition disks and initialize journals on its own. Pass all your devices (HDD and SSD) to this script &mdash; it will partition disks and initialize journals on its own.
This script skips HDDs which are already partitioned so if you want to use non-empty disks for This script skips HDDs which are already partitioned so if you want to use non-empty disks for
@ -68,26 +55,28 @@ On the monitor hosts:
but some free unpartitioned space must be available because the script creates new partitions for journals. but some free unpartitioned space must be available because the script creates new partitions for journals.
- You can change OSD configuration in units or in `vitastor.conf`. - You can change OSD configuration in units or in `vitastor.conf`.
Check [Configuration Reference](../config.en.md) for parameter descriptions. Check [Configuration Reference](../config.en.md) for parameter descriptions.
- If all your drives have capacitors, and even if not, but if you ran `vitastor-disk`
without `--disable_data_fsync off` at the first step, then put the following
setting into etcd: \
`etcdctl --endpoints=... put /vitastor/config/global '{"immediate_commit":"all"}'`
- Start all OSDs: `systemctl start vitastor.target` - Start all OSDs: `systemctl start vitastor.target`
## Create a pool ## Create a pool
Create a pool using vitastor-cli: Create pool configuration in etcd:
``` ```
vitastor-cli create-pool testpool --pg_size 2 --pg_count 256 etcdctl --endpoints=... put /vitastor/config/pools '{"1":{"name":"testpool",
"scheme":"replicated","pg_size":2,"pg_minsize":1,"pg_count":256,"failure_domain":"host"}}'
``` ```
For EC pools the configuration should look like the following: For EC pools the configuration should look like the following:
``` ```
vitastor-cli create-pool testpool --ec 2+2 --pg_count 256 etcdctl --endpoints=... put /vitastor/config/pools '{"2":{"name":"ecpool",
"scheme":"ec","pg_size":4,"parity_chunks":2,"pg_minsize":2,"pg_count":256,"failure_domain":"host"}}'
``` ```
Add `--immediate_commit none` if you added `--disable_data_fsync off` at the OSD
initialization step, or if `vitastor-disk` complained about impossibility to
disable drive cache.
After you do this, one of the monitors will configure PGs and OSDs will start them. After you do this, one of the monitors will configure PGs and OSDs will start them.
If you use HDDs you should also add `"block_size": 1048576` to pool configuration. If you use HDDs you should also add `"block_size": 1048576` to pool configuration.
@ -115,9 +104,3 @@ After that, you can [run benchmarks](../usage/fio.en.md) or [start QEMU manually
- [Proxmox](../installation/proxmox.en.md) - [Proxmox](../installation/proxmox.en.md)
- [OpenStack](../installation/openstack.en.md) - [OpenStack](../installation/openstack.en.md)
- [Kubernetes CSI](../installation/kubernetes.en.md) - [Kubernetes CSI](../installation/kubernetes.en.md)
## Create VitastorFS
If you want to use clustered file system in addition to VM or container images:
- [Follow the instructions here](../usage/nfs.en.md#vitastorfs)

View File

@ -7,34 +7,22 @@
# Быстрый старт # Быстрый старт
- [Подготовка](#подготовка) - [Подготовка](#подготовка)
- [Рекомендуемые диски](#рекомендуемые-диски)
- [Настройте мониторы](#настройте-мониторы) - [Настройте мониторы](#настройте-мониторы)
- [Настройте OSD](#настройте-osd) - [Настройте OSD](#настройте-osd)
- [Создайте пул](#создайте-пул) - [Создайте пул](#создайте-пул)
- [Проверьте состояние кластера](#проверьте-состояние-кластера) - [Проверьте состояние кластера](#проверьте-состояние-кластера)
- [Создайте образ](#создайте-образ) - [Создайте образ](#создайте-образ)
- [Установите плагины](#установите-плагины) - [Установите плагины](#установите-плагины)
- [Создайте VitastorFS](#создайте-vitastorfs)
## Подготовка ## Подготовка
- Возьмите серверы с SSD (SATA или NVMe), желательно с конденсаторами (серверные SSD). Можно - Возьмите серверы с SSD (SATA или NVMe), желательно с конденсаторами (серверные SSD). Можно
использовать и десктопные SSD, включив режим отложенного fsync, но производительность будет хуже. использовать и десктопные SSD, включив режим отложенного fsync, но производительность будет хуже.
О конденсаторах читайте [здесь](../config/layout-cluster.ru.md#immediate_commit). О конденсаторах читайте [здесь](../config/layout-cluster.ru.md#immediate_commit).
- Если хотите использовать HDD, берите современные модели с Media или SSD кэшем - HGST Ultrastar,
Toshiba MG, Seagate EXOS или что-то похожее. Если такого кэша у ваших дисков нет,
обязательно возьмите SSD под метаданные и журнал (маленькие, буквально 2 ГБ на 1 ТБ HDD-места).
- Возьмите быструю сеть, минимум 10 гбит/с. Идеал - что-то вроде Mellanox ConnectX-4 с RoCEv2. - Возьмите быструю сеть, минимум 10 гбит/с. Идеал - что-то вроде Mellanox ConnectX-4 с RoCEv2.
- Для лучшей производительности отключите энергосбережение CPU: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`. - Для лучшей производительности отключите энергосбережение CPU: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`.
- [Установите пакеты Vitastor](../installation/packages.ru.md). - [Установите пакеты Vitastor](../installation/packages.ru.md).
## Рекомендуемые диски
- SATA SSD: Micron 5100/5200/5300/5400, Samsung PM863/PM883/PM893, Intel D3-S4510/4520/4610/4620, Kingston DC500M
- NVMe: Micron 9100/9200/9300/9400, Micron 7300/7450, Samsung PM983/PM9A3, Samsung PM1723/1735/1743,
Intel DC-P3700/P4500/P4600, Intel D5-P4320, Intel D7-P5500/P5600, Intel Optane, Kingston DC1000B/DC1500M
- HDD: HGST Ultrastar, Toshiba MG, Seagate EXOS
## Настройте мониторы ## Настройте мониторы
На хостах, выделенных под мониторы: На хостах, выделенных под мониторы:
@ -57,10 +45,9 @@
} }
``` ```
- Инициализуйте OSD: - Инициализуйте OSD:
- Только SSD или только HDD: `vitastor-disk prepare /dev/sdXXX [/dev/sdYYY ...]`. - SSD: `vitastor-disk prepare /dev/sdXXX [/dev/sdYYY ...]`. Если вы используете
Если вы используете десктопные SSD без конденсаторов, добавьте опцию `--disable_data_fsync off`, десктопные SSD без конденсаторов, можете оставить кэш включённым, добавив
чтобы оставить кэш записи диска включённым. НЕ добавляйте эту опцию, если используете опцию `--disable_data_fsync off`.
жёсткие диски (HDD).
- Гибридные, SSD+HDD: `vitastor-disk prepare --hybrid /dev/sdXXX [/dev/sdYYY ...]`. - Гибридные, SSD+HDD: `vitastor-disk prepare --hybrid /dev/sdXXX [/dev/sdYYY ...]`.
Передайте все ваши SSD и HDD скрипту в командной строке подряд, скрипт автоматически выделит Передайте все ваши SSD и HDD скрипту в командной строке подряд, скрипт автоматически выделит
разделы под журналы на SSD и данные на HDD. Скрипт пропускает HDD, на которых уже есть разделы разделы под журналы на SSD и данные на HDD. Скрипт пропускает HDD, на которых уже есть разделы
@ -69,26 +56,29 @@
для журналов, на SSD должно быть доступно свободное нераспределённое место. для журналов, на SSD должно быть доступно свободное нераспределённое место.
- Вы можете менять параметры OSD в юнитах systemd или в `vitastor.conf`. Описания параметров - Вы можете менять параметры OSD в юнитах systemd или в `vitastor.conf`. Описания параметров
смотрите в [справке по конфигурации](../config.ru.md). смотрите в [справке по конфигурации](../config.ru.md).
- Если все ваши диски - серверные с конденсаторами, и даже если нет, но при этом
вы не добавляли опцию `--disable_data_fsync off` на первом шаге, а `vitastor-disk`
не ругался на невозможность отключения кэша дисков, пропишите следующую настройку
в глобальную конфигурацию в etcd: \
`etcdctl --endpoints=... put /vitastor/config/global '{"immediate_commit":"all"}'`.
- Запустите все OSD: `systemctl start vitastor.target` - Запустите все OSD: `systemctl start vitastor.target`
## Создайте пул ## Создайте пул
Создайте пул с помощью vitastor-cli: Создайте конфигурацию пула с помощью etcdctl:
``` ```
vitastor-cli create-pool testpool --pg_size 2 --pg_count 256 etcdctl --endpoints=... put /vitastor/config/pools '{"1":{"name":"testpool",
"scheme":"replicated","pg_size":2,"pg_minsize":1,"pg_count":256,"failure_domain":"host"}}'
``` ```
Для пулов с кодами коррекции ошибок конфигурация должна выглядеть примерно так: Для пулов с кодами коррекции ошибок конфигурация должна выглядеть примерно так:
``` ```
vitastor-cli create-pool testpool --ec 2+2 --pg_count 256 etcdctl --endpoints=... put /vitastor/config/pools '{"2":{"name":"ecpool",
"scheme":"ec","pg_size":4,"parity_chunks":2,"pg_minsize":2,"pg_count":256,"failure_domain":"host"}}'
``` ```
Добавьте также опцию `--immediate_commit none`, если вы добавляли `--disable_data_fsync off`
на этапе инициализации OSD, либо если `vitastor-disk` ругался на невозможность отключения
кэша дисков.
После этого один из мониторов должен сконфигурировать PG, а OSD должны запустить их. После этого один из мониторов должен сконфигурировать PG, а OSD должны запустить их.
Если вы используете HDD-диски, то добавьте в конфигурацию пулов опцию `"block_size": 1048576`. Если вы используете HDD-диски, то добавьте в конфигурацию пулов опцию `"block_size": 1048576`.
@ -116,10 +106,3 @@ vitastor-cli create -s 10G testimg
- [Proxmox](../installation/proxmox.ru.md) - [Proxmox](../installation/proxmox.ru.md)
- [OpenStack](../installation/openstack.ru.md) - [OpenStack](../installation/openstack.ru.md)
- [Kubernetes CSI](../installation/kubernetes.ru.md) - [Kubernetes CSI](../installation/kubernetes.ru.md)
## Создайте VitastorFS
Если вы хотите использовать не только блочные образы виртуальных машин или контейнеров,
а также кластерную файловую систему, то:
- [Следуйте инструкциям](../usage/nfs.ru.md#vitastorfs)

View File

@ -1,154 +0,0 @@
[Documentation](../../README.md#documentation) → Performance → Newer benchmark of Vitastor 1.3.1
-----
[Читать на русском](bench2.ru.md)
# Newer benchmark of Vitastor 1.3.1
- [Test environment](#test-environment)
- [Notes](#notes)
- [Raw drive performance](#raw-drive-performance)
- [2 replicas](#2-replicas)
- [3 replicas](#3-replicas)
- [EC 2+1](#ec-2-1)
## Test environment
Hardware configuration: 3 nodes, each with:
- 8x NVMe Samsung PM9A3 1.92 TB
- 2x Xeon Gold 6342 (24 cores @ 2.8 GHz)
- 256 GB RAM
- Dual-port 25 GbE Mellanox ConnectX-4 LX network card with RoCEv2
- Connected to 2 Mellanox SN2010 switches with MLAG
## Notes
Vitastor version was 1.3.1.
Tests were ran from the storage nodes - 4 fio clients per each of 3 nodes.
The same large 3 TB image was tested from all hosts because Vitastor has no
performance penalties related to running multiple clients over a single inode.
CPU power saving was disabled. 4 OSDs were created per each NVMe.
Checksums were not enabled. Tests with checksums will be conducted later,
along with the newer version of Vitastor, and results will be updated.
CPU configuration was not optimal because of NUMA. It's better to avoid 2-socket
platforms. It was especially noticeable in RDMA tests - in the form of ksoftirqd
processes (usually 1 per server) eating 100 % of one CPU core and actual bandwidth
of one network port reduced to 3-5 Gbit/s instead of 25 Gbit/s - probably because
of RFS (Receive Flow Steering) misses. Many network configurations were tried during
tests, but nothing helped to solve this problem, so final tests were conducted with
the default settings.
# Raw drive performance
- Linear write ~1000-2000 MB/s, depending on current state of the drive's garbage collector
- Linear read ~3300 MB/s
- T1Q1 random write ~60000 iops (latency ~0.015ms)
- T1Q1 random read ~14700 iops (latency ~0.066ms)
- T1Q16 random write ~180000 iops
- T1Q16 random read ~120000 iops
- T1Q32 random write ~180000 iops
- T1Q32 random read ~195000 iops
- T1Q128 random write ~180000 iops
- T1Q128 random read ~195000 iops
- T4Q128 random write ~525000 iops
- T4Q128 random read ~750000 iops
These numbers make obvious that results could be much better if a faster network
was available, because NVMe drives obviously weren't a bottleneck. For example,
theoretical maximum linear read performance for 24 drives could be 79.2 GByte/s,
which is 633 Gbit/s. Real Vitastor read speed (both linear and random) was around
16 Gbyte/s, which is 130 Gbit/s. It's important to note that it was still much
larger than the network bandwidth of one server (50 Gbit/s). This is also correct
because tests were conducted from all 3 nodes.
## 2 replicas
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Linear read (4M T6 Q16) | 13.13 GB/s | 16.25 GB/s |
| Linear write (4M T6 Q16) | 8.16 GB/s | 7.88 GB/s |
| Read 4k T1 Q1 | 8745 iops | 10252 iops |
| Write 4k T1 Q1 | 8097 iops | 11488 iops |
| Read 4k T12 Q128 | 1305936 iops | 4265861 iops |
| Write 4k T12 Q128 | 660490 iops | 1384033 iops |
CPU consumption OSD per 1 disk:
| | TCP | RDMA |
|------------------------------|---------|---------|
| Linear read (4M T6 Q16) | 29.7 % | 29.8 % |
| Linear write (4M T6 Q16) | 84.4 % | 33.2 % |
| Read 4k T12 Q128 | 98.4 % | 119.1 % |
| Write 4k T12 Q128 | 173.4 % | 175.9 % |
CPU consumption per 1 client (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Linear read (4M T6 Q16) | 100 % | 85.2 % |
| Linear write (4M T6 Q16) | 55.8 % | 48.8 % |
| Read 4k T12 Q128 | 99.9 % | 96 % |
| Write 4k T12 Q128 | 71.6 % | 48.5 % |
## 3 replicas
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Linear read (4M T6 Q16) | 13.98 GB/s | 16.54 GB/s |
| Linear write (4M T6 Q16) | 5.38 GB/s | 5.7 GB/s |
| Read 4k T1 Q1 | 8969 iops | 9980 iops |
| Write 4k T1 Q1 | 8126 iops | 11672 iops |
| Read 4k T12 Q128 | 1358818 iops | 4279088 iops |
| Write 4k T12 Q128 | 433890 iops | 993506 iops |
CPU consumption OSD per 1 disk:
| | TCP | RDMA |
|------------------------------|--------|---------|
| Linear read (4M T6 Q16) | 24.9 % | 25.4 % |
| Linear write (4M T6 Q16) | 99.3 % | 38.4 % |
| Read 4k T12 Q128 | 95.3 % | 111.7 % |
| Write 4k T12 Q128 | 173 % | 194 % |
CPU consumption per 1 client (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Linear read (4M T6 Q16) | 99.9 % | 85.8 % |
| Linear write (4M T6 Q16) | 38.9 % | 38.1 % |
| Read 4k T12 Q128 | 100 % | 96.1 % |
| Write 4k T12 Q128 | 51.6 % | 41.9 % |
## EC 2+1
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Linear read (4M T6 Q16) | 10.07 GB/s | 11.43 GB/s |
| Linear write (4M T6 Q16) | 7.74 GB/s | 8.32 GB/s |
| Read 4k T1 Q1 | 7408 iops | 8891 iops |
| Write 4k T1 Q1 | 3525 iops | 4903 iops |
| Read 4k T12 Q128 | 1216496 iops | 2552765 iops |
| Write 4k T12 Q128 | 278110 iops | 821261 iops |
CPU consumption OSD per 1 disk:
| | TCP | RDMA |
|------------------------------|---------|---------|
| Linear read (4M T6 Q16) | 68.6 % | 33.6 % |
| Linear write (4M T6 Q16) | 108.3 % | 50.2 % |
| Read 4k T12 Q128 | 138.1 % | 97.9 % |
| Write 4k T12 Q128 | 168.7 % | 188.5 % |
CPU consumption per 1 client (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Linear read (4M T6 Q16) | 88.2 % | 52.4 % |
| Linear write (4M T6 Q16) | 51.8 % | 46.8 % |
| Read 4k T12 Q128 | 99.7 % | 61.3 % |
| Write 4k T12 Q128 | 35.1 % | 31.3 % |

View File

@ -1,157 +0,0 @@
[Документация](../../README-ru.md#документация) → Производительность → Более новый тест Vitastor 1.3.1
-----
[Read in English](bench2.en.md)
# Более новый тест Vitastor 1.3.1
- [Описание стенда](#описание-стенда)
- [Примечания](#примечания)
- [Производительность голых дисков](#производительность-голых-дисков)
- [2 реплики](#2-реплики)
- [3 реплики](#3-реплики)
- [EC 2+1](#ec-2-1)
## Описание стенда
Железо: 3 сервера, в каждом:
- 8x NVMe Samsung PM9A3 1.92 TB
- 2x Xeon Gold 6342 (24 ядра @ 2.8 GHz)
- 256 GB RAM
- Двухпортовая 25 GbE сетевая карта Mellanox ConnectX-4 LX с поддержкой RoCEv2
- Подключение к 2 коммутаторам Mellanox SN2010 в MLAG
## Примечания
Версия Vitastor 1.3.1.
Тесты проводились с самих серверов хранения - по 4 клиента fio с каждого из 3 серверов.
Тестировался один большой образ размером 3 ТБ со всех хостов - создавать отдельные образы
для тестов в Vitastor необязательно, т.к. в Vitastor нет замедления при записи в один
узел несколькими клиентами.
Экономия энергии CPU отключена. На каждый NVMe создавалось 4 OSD.
Контрольные суммы не включались. Тесты с контрольными суммами будут проведены
позднее. Тогда же будет протестирована более новая версия Vitastor, и результаты
будут обновлены.
Конфигурация CPU стенда неоптимальна из-за NUMA - двухпроцессорных серверов лучше
избегать. Особенно это проявлялось во время тестов с RDMA - выражалось это в потреблении
100% одного ядра CPU одним процессом ksoftirqd и работой одного из двух сетевых портов
на скорости 3-5 ГБит/с вместо 25 ГБит/с - предположительно, из-за "непопаданий" RFS
(Receive Flow Steering) на нужные ядра. Решить эту проблему во время проведения тестов
не получилось. Было перепробовано множество различных настроек, но в итоге тесты проведены
с настройками по умолчанию, т.к. улучшения добиться не удалось.
# Производительность голых дисков
- Линейная запись ~1000-2000 МБ/с, в зависимости от состояния сборщика мусора диска
- Линейное чтение ~3300 МБ/с
- T1Q1 запись ~60000 iops (задержка ~0.015ms)
- T1Q1 чтение ~14700 iops (задержка ~0.066ms)
- T1Q16 запись ~180000 iops
- T1Q16 чтение ~120000 iops
- T1Q32 запись ~180000 iops
- T1Q32 чтение ~195000 iops
- T1Q128 запись ~180000 iops
- T1Q128 чтение ~195000 iops
- T4Q128 запись ~525000 iops
- T4Q128 чтение ~750000 iops
Из данных цифр очевидно, что при наличии более быстрой сети результаты были бы
значительно лучше, так как в диски тест, очевидно, не упирался. Например, теоретический предел по
линейному чтению для 24 таких дисков был бы около 79.2 ГБайт/с, то есть,
633 гигабита в секунду. Реальная скорость чтения (и случайного, и линейного)
Vitastor составила примерно 16 ГБайт/с, то есть 130 гигабит в секунду. При этом
следует заметить, что этот результат всё равно значительно лучше пропускной способности
сети отдельно взятого узла - что тоже вполне логично, так как тест выполнялся со
всех трёх узлов.
## 2 реплики
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Линейное чтение (4M T6 Q16) | 13.13 ГБ/с | 16.25 ГБ/с |
| Линейная запись (4M T6 Q16) | 8.16 ГБ/с | 7.88 ГБ/с |
| Чтение 4k T1 Q1 | 8745 iops | 10252 iops |
| Запись 4k T1 Q1 | 8097 iops | 11488 iops |
| Чтение 4k T12 Q128 | 1305936 iops | 4265861 iops |
| Запись 4k T12 Q128 | 660490 iops | 1384033 iops |
Потребление CPU OSD на 1 диск:
| | TCP | RDMA |
|------------------------------|---------|---------|
| Линейное чтение (4M T6 Q16) | 29.7 % | 29.8 % |
| Линейная запись (4M T6 Q16) | 84.4 % | 33.2 % |
| Чтение 4k T12 Q128 | 98.4 % | 119.1 % |
| Запись 4k T12 Q128 | 173.4 % | 175.9 % |
Потребление CPU на 1 клиента (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Линейное чтение (4M T6 Q16) | 100 % | 85.2 % |
| Линейная запись (4M T6 Q16) | 55.8 % | 48.8 % |
| Чтение 4k T12 Q128 | 99.9 % | 96 % |
| Запись 4k T12 Q128 | 71.6 % | 48.5 % |
## 3 реплики
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Линейное чтение (4M T6 Q16) | 13.98 ГБ/с | 16.54 ГБ/с |
| Линейная запись (4M T6 Q16) | 5.38 ГБ/с | 5.7 ГБ/с |
| Чтение 4k T1 Q1 | 8969 iops | 9980 iops |
| Запись 4k T1 Q1 | 8126 iops | 11672 iops |
| Чтение 4k T12 Q128 | 1358818 iops | 4279088 iops |
| Запись 4k T12 Q128 | 433890 iops | 993506 iops |
Потребление CPU OSD на 1 диск:
| | TCP | RDMA |
|------------------------------|--------|---------|
| Линейное чтение (4M T6 Q16) | 24.9 % | 25.4 % |
| Линейная запись (4M T6 Q16) | 99.3 % | 38.4 % |
| Чтение 4k T12 Q128 | 95.3 % | 111.7 % |
| Запись 4k T12 Q128 | 173 % | 194 % |
Потребление CPU на 1 клиента (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Линейное чтение (4M T6 Q16) | 99.9 % | 85.8 % |
| Линейная запись (4M T6 Q16) | 38.9 % | 38.1 % |
| Чтение 4k T12 Q128 | 100 % | 96.1 % |
| Запись 4k T12 Q128 | 51.6 % | 41.9 % |
## EC 2+1
| | TCP | RDMA |
|------------------------------|--------------|--------------|
| Линейное чтение (4M T6 Q16) | 10.07 ГБ/с | 11.43 ГБ/с |
| Линейная запись (4M T6 Q16) | 7.74 ГБ/с | 8.32 ГБ/с |
| Чтение 4k T1 Q1 | 7408 iops | 8891 iops |
| Запись 4k T1 Q1 | 3525 iops | 4903 iops |
| Чтение 4k T12 Q128 | 1216496 iops | 2552765 iops |
| Запись 4k T12 Q128 | 278110 iops | 821261 iops |
Потребление CPU OSD на 1 диск:
| | TCP | RDMA |
|------------------------------|---------|---------|
| Линейное чтение (4M T6 Q16) | 68.6 % | 33.6 % |
| Линейная запись (4M T6 Q16) | 108.3 % | 50.2 % |
| Чтение 4k T12 Q128 | 138.1 % | 97.9 % |
| Запись 4k T12 Q128 | 168.7 % | 188.5 % |
Потребление CPU на 1 клиента (fio):
| | TCP | RDMA |
|------------------------------|--------|--------|
| Линейное чтение (4M T6 Q16) | 88.2 % | 52.4 % |
| Линейная запись (4M T6 Q16) | 51.8 % | 46.8 % |
| Чтение 4k T12 Q128 | 99.7 % | 61.3 % |
| Запись 4k T12 Q128 | 35.1 % | 31.3 % |

View File

@ -11,26 +11,19 @@ Replicated setups:
- Single-threaded write+fsync latency: - Single-threaded write+fsync latency:
- With immediate commit: 2 network roundtrips + 1 disk write. - With immediate commit: 2 network roundtrips + 1 disk write.
- With lazy commit: 4 network roundtrips + 1 disk write + 1 disk flush. - With lazy commit: 4 network roundtrips + 1 disk write + 1 disk flush.
- Linear read: `min(total network bandwidth, sum(disk read MB/s))`. - Saturated parallel read iops: min(network bandwidth, sum(disk read iops)).
- Linear write: `min(total network bandwidth, sum(disk write MB/s / number of replicas))`. - Saturated parallel write iops: min(network bandwidth, sum(disk write iops / number of replicas / write amplification)).
- Saturated parallel read iops: `min(total network bandwidth, sum(disk read iops))`.
- Saturated parallel write iops: `min(total network bandwidth / number of replicas, sum(disk write iops / number of replicas / (write amplification = 4)))`.
EC/XOR setups (EC N+K): EC/XOR setups:
- Single-threaded (T1Q1) read latency: 1.5 network roundtrips + 1 disk read. - Single-threaded (T1Q1) read latency: 1.5 network roundtrips + 1 disk read.
- Single-threaded write+fsync latency: - Single-threaded write+fsync latency:
- With immediate commit: 3.5 network roundtrips + 1 disk read + 2 disk writes. - With immediate commit: 3.5 network roundtrips + 1 disk read + 2 disk writes.
- With lazy commit: 5.5 network roundtrips + 1 disk read + 2 disk writes + 2 disk fsyncs. - With lazy commit: 5.5 network roundtrips + 1 disk read + 2 disk writes + 2 disk fsyncs.
- 0.5 in actually `(N-1)/N` which means that an additional roundtrip doesn't happen when - 0.5 in actually (k-1)/k which means that an additional roundtrip doesn't happen when
the read sub-operation can be served locally. the read sub-operation can be served locally.
- Linear read: `min(total network bandwidth, sum(disk read MB/s))`. - Saturated parallel read iops: min(network bandwidth, sum(disk read iops)).
- Linear write: `min(total network bandwidth, sum(disk write MB/s * N/(N+K)))`. - Saturated parallel write iops: min(network bandwidth, sum(disk write iops * number of data drives / (number of data + parity drives) / write amplification)).
- Saturated parallel read iops: `min(total network bandwidth, sum(disk read iops))`. In fact, you should put disk write iops under the condition of ~10% reads / ~90% writes in this formula.
- Saturated parallel write iops: roughly `total iops / (N+K) / WA`. More exactly,
`min(total network bandwidth * N/(N+K), sum(disk randrw iops / (N*4 + K*5 + 1)))` with
random read/write mix corresponding to `(N-1)/(N*4 + K*5 + 1)*100 % reads`.
- For example, with EC 2+1 it is: `(7% randrw iops) / 14`.
- With EC 6+3 it is: `(12.5% randrw iops) / 40`.
Write amplification for 4 KB blocks is usually 3-5 in Vitastor: Write amplification for 4 KB blocks is usually 3-5 in Vitastor:
1. Journal block write 1. Journal block write

View File

@ -11,27 +11,20 @@
- Запись+fsync в 1 поток: - Запись+fsync в 1 поток:
- С мгновенным сбросом: 2 RTT + 1 запись. - С мгновенным сбросом: 2 RTT + 1 запись.
- С отложенным ("ленивым") сбросом: 4 RTT + 1 запись + 1 fsync. - С отложенным ("ленивым") сбросом: 4 RTT + 1 запись + 1 fsync.
- Линейное чтение: сумма МБ/с чтения всех дисков, либо общая производительность сети (сумма пропускной способности сети всех нод), если в сеть упрётся раньше. - Параллельное чтение: сумма IOPS всех дисков либо производительность сети, если в сеть упрётся раньше.
- Линейная запись: сумма МБ/с записи всех дисков / число реплик, либо производительность сети / число реплик, если в сеть упрётся раньше. - Параллельная запись: сумма IOPS всех дисков / число реплик / WA либо производительность сети, если в сеть упрётся раньше.
- Параллельное случайное мелкое чтение: сумма IOPS чтения всех дисков, либо производительность сети, если в сеть упрётся раньше.
- Параллельная случайная мелкая запись: сумма IOPS записи всех дисков / число реплик / WA, либо производительность сети / число реплик, если в сеть упрётся раньше.
При использовании кодов коррекции ошибок (EC N+K): При использовании кодов коррекции ошибок (EC):
- Задержка чтения в 1 поток (T1Q1): 1.5 RTT + 1 чтение. - Задержка чтения в 1 поток (T1Q1): 1.5 RTT + 1 чтение.
- Запись+fsync в 1 поток: - Запись+fsync в 1 поток:
- С мгновенным сбросом: 3.5 RTT + 1 чтение + 2 записи. - С мгновенным сбросом: 3.5 RTT + 1 чтение + 2 записи.
- С отложенным ("ленивым") сбросом: 5.5 RTT + 1 чтение + 2 записи + 2 fsync. - С отложенным ("ленивым") сбросом: 5.5 RTT + 1 чтение + 2 записи + 2 fsync.
- Под 0.5 на самом деле подразумевается (N-1)/N, где N - число дисков данных, - Под 0.5 на самом деле подразумевается (k-1)/k, где k - число дисков данных,
что означает, что дополнительное обращение по сети не нужно, когда операция что означает, что дополнительное обращение по сети не нужно, когда операция
чтения обслуживается локально. чтения обслуживается локально.
- Линейное чтение: сумма МБ/с чтения всех дисков, либо общая производительность сети, если в сеть упрётся раньше. - Параллельное чтение: сумма IOPS всех дисков либо производительность сети, если в сеть упрётся раньше.
- Линейная запись: сумма МБ/с записи всех дисков * N/(N+K), либо производительность сети * N / (N+K), если в сеть упрётся раньше. - Параллельная запись: сумма IOPS всех дисков / общее число дисков данных и чётности / WA либо производительность сети, если в сеть упрётся раньше.
- Параллельное случайное мелкое чтение: сумма IOPS чтения всех дисков либо производительность сети, если в сеть упрётся раньше. Примечание: IOPS дисков в данном случае надо брать в смешанном режиме чтения/записи в пропорции, аналогичной формулам выше.
- Параллельная случайная мелкая запись: грубо `(сумма IOPS / (N+K) / WA)`. Если точнее, то:
сумма смешанного IOPS всех дисков при `(N-1)/(N*4 + K*5 + 1)*100 %` чтения, делённая на `(N*4 + K*5 + 1)`.
Либо, производительность сети * N/(N+K), если в сеть упрётся раньше.
- Например, при EC 2+1 это: `(сумма IOPS при 7% чтения) / 14`.
- При EC 6+3 это: `(сумма IOPS при 12.5% чтения) / 40`.
WA (мультипликатор записи) для 4 КБ блоков в Vitastor обычно составляет 3-5: WA (мультипликатор записи) для 4 КБ блоков в Vitastor обычно составляет 3-5:
1. Запись метаданных в журнал 1. Запись метаданных в журнал

View File

@ -1,265 +0,0 @@
[Documentation](../../README.md#documentation) → Usage → Administration
-----
[Читать на русском](admin.ru.md)
# Administration
- [Pool states](#pool-states)
- [PG states](#pg-states)
- [Base PG states](#base-pg-states)
- [Additional PG states](#additional-pg-states)
- [Removing a healthy disk](#removing-a-healthy-disk)
- [Removing a failed disk](#removing-a-failed-disk)
- [Adding a disk](#adding-a-disk)
- [Restoring from lost pool configuration](#restoring-from-lost-pool-configuration)
- [Upgrading Vitastor](#upgrading-vitastor)
- [OSD memory usage](#osd-memory-usage)
## Pool states
Pool is active — that is, fully available for client input/output — when all its PGs are
'active' (maybe with some additional state flags).
If at least 1 PG is inactive, pool is also inactive and all clients suspend their I/O and
wait until you fix the cluster. :-)
## PG states
PG states may be seen in [vitastor-cli status](cli.en.md#status) output.
PG state consists of exactly 1 base state and an arbitrary number of additional states.
### Base PG states
PG state always includes exactly 1 of the following base states:
- **active** — PG is active and handles user I/O.
- **incomplete** — Not enough OSDs are available to activate this PG. That is, more disks
are lost than it's allowed by the pool's redundancy scheme. For example, if the pool has
pg_size=3 and pg_minsize=1, part of the data may be written only to 1 OSD. If that exact
OSD is lost, PG will become **incomplete**.
- **offline** — PG isn't activated by any OSD at all. Either primary OSD isn't set for
this PG at all (if the pool is just created), or an unavailable OSD is set as primary,
or the primary OSD refuses to start this PG (for example, because of wrong block_size),
or the PG is stopped by the monitor using `pause: true` flag in `/vitastor/pg/config` in etcd.
- **starting** — primary OSD has acquired PG lock in etcd, PG is starting.
- **peering** — primary OSD requests PG object listings from secondary OSDs and calculates
the PG state.
- **repeering** — PG is waiting for current I/O operations to complete and will
then transition to **peering**.
- **stopping** — PG is waiting for current I/O operations to complete and will
then transition to **offline** or be activated by another OSD.
All states except **active** mean that PG is inactive and client I/O is suspended.
**peering** state is normally visible only for a short period of time during OSD restarts
and during switching primary OSD of PGs.
**starting**, **repeering**, **stopping** states normally almost aren't visible at all.
If you notice them for any noticeable time — chances are some operations on some OSDs hung.
Search for "slow op" in OSD logs to find them — operations hung for more than
[slow_log_interval](../config/osd.en.md#slow_log_interval) are logged as "slow ops".
State transition diagram:
![PG state transitions](pg_states.svg "PG state transitions")
### Additional PG states
If a PG is active it can also have any number of the following additional states:
- **degraded** — PG is running on reduced number of drives (OSDs), redundancy of all
objects in this PG is reduced.
- **has_incomplete** — some objects in this PG are incomplete (unrecoverable), that is,
they have too many lost EC parts (more than pool's [parity_chunks](../config/pool.en.md#parity_chunks)).
- **has_degraded** — some objects in this PG have reduced redundancy
compared to the rest of the PG (so PG can be degraded+has_degraded at the same time).
These objects should be healed automatically by recovery process, unless
it's disabled by [no_recovery](../config/osd.en.md#no_recovery).
- **has_misplaced** — some objects in this PG are stored on an OSD set different from
the target set of the PG. These objects should be moved automatically, unless
rebalance is disabled by [no_rebalance](../config/osd.en.md#no_rebalance). Objects
that are degraded and misplaced at the same time are treated as just degraded.
- **has_unclean** — one more state normally noticeable only for very short time during
PG activation. It's used only with EC pools and means that some objects of this PG
have started but not finished modifications. All such objects are either quickly
committed or rolled back by the primary OSD when starting the PG, that is why the
state shouldn't be noticeable. If you notice it, it probably means that commit or
rollback operations are hung.
- **has_invalid** — PG contains objects with incorrect part ID. Never occurs normally.
It can only occur if you delete a non-empty EC pool and then recreate it as a replica
pool or with smaller data part count.
- **has_corrupted** — PG has corrupted objects, discovered by checking checksums during
read or during scrub. When possible, such objects should be recovered automatically.
If objects remain corrupted, use [vitastor-cli describe](cli.en.md#describe) to find
out details and/or look into the log of the primary OSD of the PG.
- **has_inconsistent** — PG has objects with non-matching parts or copies on different OSDs,
and it's impossible to determine which copy is correct automatically. It may happen
if you use a pool with 2 replica and you don't enable checksums, and if data on one
of replicas becomes corrupted. You should also use vitastor-cli [describe](cli.en.md#describe)
and [fix](cli.en.md#fix) commands to remove the incorrect version in this case.
- **left_on_dead** — part of the data of this PG is left on unavailable OSD that isn't
fully removed from the cluster. You should either start the corresponding OSD back and
let it remove the unneeded data or remove it from cluster using vitastor-cli
[rm-osd](cli.en.md#rm-osd) if you know that it's gone forever (for example, if the disk died).
- **scrubbing** — data [scrub](../config/osd.en.md#auto_scrub) is running for this PG.
## Removing a healthy disk
Before removing a healthy disk from the cluster set its OSD weight(s) to 0 to
move data away. To do that, run `vitastor-cli modify-osd --reweight 0 <НОМЕР_OSD>`.
Then wait until rebalance finishes and remove OSD by running `vitastor-disk purge /dev/vitastor/osdN-data`.
Zero weight can also be put manually into etcd key `/vitastor/config/osd/<НОМЕР_OSD>`, for example:
```
etcdctl --endpoints=http://1.1.1.1:2379/v3 put /vitastor/config/osd/1 '{"reweight":0}'
```
## Removing a failed disk
If a disk is already dead, its OSD(s) are likely already stopped.
In this case just remove OSD(s) from the cluster by running `vitastor-cli rm-osd OSD_NUMBER`.
## Adding a disk
If you're adding a server, first install Vitastor packages and copy the
`/etc/vitastor/vitastor.conf` configuration file to it.
After that you can just run `vitastor-disk prepare /dev/nvmeXXX`, of course with
the same parameters which you used for other OSDs in your cluster before.
## Restoring from lost pool configuration
If you remove or corrupt `/vitastor/config/pools` key in etcd all pools will
be deleted. Don't worry, the data won't be lost, but you'll need to perform
a specific recovery procedure.
First you need to restore previous configuration of the pool with the same ID
and EC/replica parameters and wait until pool PGs appear in `vitastor-cli status`.
Then add all OSDs into the history records of all PGs. You can do it by running
the following script (just don't forget to use your own PG_COUNT and POOL_ID):
```
PG_COUNT=32
POOL_ID=1
ALL_OSDS=$(etcdctl --endpoints=your_etcd_address:2379 get --keys-only --prefix /vitastor/osd/stats/ | \
perl -e '$/ = undef; $a = <>; $a =~ s/\s*$//; $a =~ s!/vitastor/osd/stats/!!g; $a =~ s/\s+/,/g; print $a')
for i in $(seq 1 $PG_COUNT); do
etcdctl --endpoints=your_etcd_address:2379 put /vitastor/pg/history/$POOL_ID/$i '{"all_peers":['$ALL_OSDS']}'
done
```
After that all PGs should peer and find all previous data.
## Upgrading Vitastor
Every upcoming Vitastor version is usually compatible with previous both forward
and backward regarding the network protocol and etcd data structures.
So, by default, if this page doesn't contain explicit different instructions, you
can upgrade your Vitastor cluster by simply upgrading packages and restarting all
OSDs and monitors in any order.
Upgrading is performed without stopping clients (VMs/containers), you just need to
upgrade and restart servers one by one. However, ideally you should restart VMs too
to make them use the new version of the client library.
### 1.7.x to 1.8.0
It's recommended to upgrade from version <= 1.7.x to version >= 1.8.0 with full downtime,
i.e. you should first stop clients and then the cluster (OSDs and monitor), because 1.8.0
includes a fix for etcd event stream inconsistency which could lead to "incomplete" objects
appearing in EC pools, and in rare cases, probably, even to data corruption during mass OSD
restarts. It doesn't mean that you WILL hit this problem if you upgrade without full downtime,
but it's better to secure yourself against it.
Also, if you upgrade version from <= 1.7.x to version >= 1.8.0, BUT <= 1.9.0: restart all clients
(VMs and so on), otherwise they will hang when monitor clears old PG configuration key,
which happens 24 hours after upgrade.
This is fixed in 1.9.1. So, after upgrading version <= 1.7.x directly to version >= 1.9.1,
you DO NOT have to restart all old clients immediately - they will work like before until
you decide to upgrade them too. The downside is that you'll have to remove the old PG
configuration key (`/vitastor/config/pgs`) from etcd by hand when you make sure that all
your clients are restarted.
### 1.1.x to 1.2.0
Upgrading version <= 1.1.x to version >= 1.2.0, if you use EC n+k with k>=2, is recommended
to be performed with full downtime: first you should stop all clients, then all OSDs,
then upgrade and start everything back — because versions before 1.2.0 have several
bugs leading to invalid data being read in EC n+k, k>=2 configurations in degraded pools.
### 0.8.7 to 0.9.0
Versions <= 0.8.7 are incompatible with versions >= 0.9.0, so you should first
upgrade from <= 0.8.7 to 0.8.8 or 0.8.9, and only then to >= 0.9.x. If you upgrade
without this intermediate step, client I/O will hang until the end of upgrade process.
### 0.5.x to 0.6.x
Upgrading from <= 0.5.x to >= 0.6.x is not supported.
## Downgrade
Downgrade are also allowed freely, except the following specific instructions:
### 1.8.0 to 1.7.1
Before downgrading from version >= 1.8.0 to version <= 1.7.1
you have to copy /vitastor/pg/config etcd key to /vitastor/config/pgs:
```
etcdctl --endpoints=http://... get --print-value-only /vitastor/pg/config | \
etcdctl --endpoints=http://... put /vitastor/config/pgs
```
Then you can just install older packages and restart all services.
If you performed downgrade without first copying that key, run "add all OSDs into the
history records of all PGs" from [Restoring from lost pool configuration](#restoring-from-lost-pool-configuration).
### 1.0.0 to 0.9.x
Version 1.0.0 has a new disk format, so OSDs initialized on 1.0.0 or later can't
be rolled back to 0.9.x or previous versions.
### 0.8.0 to 0.7.x
Versions before 0.8.0 don't have vitastor-disk, so OSDs, initialized by it, won't
start with older versions (0.4.x - 0.7.x). :-)
## OSD memory usage
OSD uses RAM mainly for:
- Metadata index: `data_size`/[`block_size`](../config/layout-cluster.en.md#block_size) * `approximately 1.1` * `32` bytes.
Consumed always.
- Copy of the on-disk metadata area: `data_size`/[`block_size`](../config/layout-cluster.en.md#block_size) * `28` bytes.
Consumed if [inmemory_metadata](../config/osd.en.md#inmemory_metadata) isn't disabled.
- Bitmaps: `data_size`/[`bitmap_granularity`](../config/layout-cluster.en.md#bitmap_granularity)/`8` * `2` bytes.
Consumed always.
- Journal index: between 0 and, approximately, journal size. Consumed always.
- Copy of the on-disk journal area: exactly journal size. Consumed if
[inmemory_journal](../config/osd.en.md#inmemory_journal) isn't disabled.
- Checksums: `data_size`/[`csum_block_size`](../config/osd.en.md#csum_block_size) * 4 bytes.
Consumed if checksums are enabled and [inmemory_metadata](../config/osd.en.md#inmemory_metadata) isn't disabled.
bitmap_granularity is almost always 4 KB.
So with default SSD settings (block_size=128k, journal_size=32M, csum_block_size=4k) memory usage is:
- Metadata and bitmaps: ~600 MB per 1 TB of data.
- Journal: up to 64 MB per 1 OSD.
- Checksums: 1 GB per 1 TB of data.
With default HDD settings (block_size=1M, journal_size=128M, csum_block_size=32k):
- Metadata and bitmaps: ~128 MB per 1 TB of data.
- Journal: up to 256 MB per 1 OSD.
- Checksums: 128 MB per 1 TB of data.

View File

@ -1,262 +0,0 @@
[Документация](../../README-ru.md#документация) → Использование → Администрирование
-----
[Read in English](admin.en.md)
# Администрирование
- [Состояния пулов](#состояния-пулов)
- [Состояния PG](#состояния-pg)
- [Базовые состояния PG](#базовые-состояния-pg)
- [Дополнительные состояния PG](#дополнительные-состояния-pg)
- [Удаление исправного диска](#удаление-исправного-диска)
- [Удаление неисправного диска](#удаление-неисправного-диска)
- [Добавление диска](#добавление-диска)
- [Восстановление потерянной конфигурации пулов](#восстановление-потерянной-конфигурации-пулов)
- [Обновление Vitastor](#обновление-vitastor)
- [Потребление памяти OSD](#потребление-памяти-osd)
## Состояния пулов
Пул активен — то есть, полностью доступен для клиентского ввода-вывода — когда все его PG
активны, то есть, имеют статус active, возможно, с любым набором дополнительных флагов.
Если хотя бы 1 PG неактивна, пул неактивен и все клиенты зависают и ждут, пока вы почините
кластер. :-)
## Состояния PG
Вы можете видеть состояния PG в выводе команды [vitastor-cli status](cli.ru.md#status).
Состояние PG состоит из ровно 1 базового флага состояния, плюс любого числа дополнительных.
### Базовые состояния PG
Состояние PG включает в себя ровно 1 флаг из следующих:
- **active** — PG активна и обрабатывает запросы ввода-вывода от пользователей.
- **incomplete** — Недостаточно живых OSD, чтобы включить эту PG.
То есть, дисков потеряно больше, чем разрешено схемой отказоустойчивости пула и pg_minsize.
Например, если у пула pg_size=3 и pg_minsize=1, то часть данных может записаться всего на 1 OSD.
Если потом конкретно этот OSD упадёт, PG окажется **incomplete**.
- **offline** — PG вообще не активирована ни одним OSD. Либо первичный OSD не назначен вообще
(если пул только создан), либо в качестве первичного назначен недоступный OSD, либо
назначенный OSD отказывается запускать эту PG (например, из-за несовпадения block_size),
либо PG остановлена монитором через флаг `pause: true` в `/vitastor/pg/config` в etcd.
- **starting** — первичный OSD захватил блокировку PG в etcd, PG запускается.
- **peering** — первичный OSD опрашивает вторичные OSD на предмет списков объектов данной PG и рассчитывает её состояние.
- **repeering** — PG ожидает завершения текущих операций ввода-вывода, после чего перейдёт в состояние **peering**.
- **stopping** — PG ожидает завершения текущих операций ввода-вывода, после чего перейдёт в состояние **offline** или поднимется на другом OSD.
Все состояния, кроме **active**, означают, что PG неактивна и ввод-вывод приостановлен.
Состояние **peering** в норме заметно только при перезапуске OSD или переключении первичных
OSD, на протяжении небольшого периода времени.
Состояния **starting**, **repeering**, **stopping** в норме практически не заметны вообще,
PG должны очень быстро переходить из них в другие. Если эти состояния заметны
хоть сколько-то значительное время — вероятно, какие-то операции на каких-то OSD зависли.
Чтобы найти их, ищите "slow op" в журналах OSD — операции, зависшие дольше,
чем на [slow_log_interval](../config/osd.ru.md#slow_log_interval), записываются в
журналы OSD как "slow op".
Диаграмма переходов:
![Диаграмма переходов](pg_states.svg "Диаграмма переходов")
### Дополнительные состояния PG
Если PG активна, она также может иметь любое число дополнительных флагов состояний:
- **degraded** — PG поднята на неполном числе дисков (OSD), избыточность хранения всех объектов снижена.
- **has_incomplete** — часть объектов в PG неполные (невосстановимые), то есть, у них потеряно
слишком много EC-частей (больше, чем [parity_chunks](../config/pool.ru.md#parity_chunks) пула).
- **has_degraded** — часть объектов в PG деградированы, избыточность их хранения снижена по сравнению
с остальным содержимым данной PG (то есть, PG может одновременно быть degraded+has_degraded).
Данные объекты должны восстановиться автоматически, если только восстановление не отключено
через [no_recovery](../config/osd.ru.md#no_recovery).
- **has_misplaced** — часть объектов в PG сейчас расположена не на целевом наборе OSD этой PG.
Данные объекты должны переместиться автоматически, если только перебалансировка не отключена
через [no_rebalance](../config/osd.ru.md#no_rebalance). Объекты, являющиеся одновременно
degraded и misplaced, считаются просто degraded.
- **has_unclean** — ещё одно состояние, в норме заметное только очень короткое время при поднятии PG.
Применяется только к EC и означает, что на каких-то OSD этой PG есть EC-части объектов, для которых
был начат, но не завершён процесс записи. Все такие объекты первичный OSD либо завершает, либо
откатывает при поднятии PG первым делом, поэтому состояние и не должно быть заметно. Опять-таки,
если оно заметно — значит, скорее всего, операции отката или завершения записи на каких-то OSD зависли.
- **has_invalid** — в PG найдены объекты с некорректными ID части. В норме не проявляется вообще
никогда, проявляется только если, не удалив данные, создать на месте EC-пула либо реплика-пул,
либо EC-пул с меньшим числом частей данных.
- **has_corrupted** — в PG есть повреждённые объекты, обнаруженные с помощью контрольных сумм или
скраба (сверки копий). Если объекты можно восстановить, они восстановятся автоматически. Если
не восстанавливаются, используйте команду [vitastor-cli describe](cli.ru.md#describe) для
выяснения деталей и/или смотрите в журнал первичного OSD данной PG.
- **has_inconsistent** — в PG есть объекты, у которых не совпадают копии/части данных на разных OSD,
и при этом автоматически определить, какая копия верная, а какая нет, невозможно. Такое может
произойти, если вы используете 2 реплики, не включали контрольные суммы, и на одной из реплик
данные повредились. В этом случае тоже надо использовать команды vitastor-cli [describe](cli.ru.md#describe)
и [fix](cli.ru.md#fix) для удаления некорректной версии.
- **left_on_dead** — часть данных PG осталась на отключённом, но не удалённом из кластера окончательно,
OSD. Вам нужно либо вернуть соответствующий OSD в строй и дать ему очистить лишние данные, либо
удалить его из кластера окончательно с помощью vitastor-cli [rm-osd](cli.ru.md#rm-osd), если
известно, что он уже не вернётся (например, если умер диск).
- **scrubbing** — идёт фоновая проверка данных PG ([скраб](../config/osd.ru.md#auto_scrub)).
## Удаление исправного диска
Перед удалением исправного диска из кластера установите его OSD вес в 0, чтобы убрать с него данные.
Для этого выполните команду `vitastor-cli modify-osd --reweight 0 <НОМЕР_OSD>`.
Дождитесь завершения перебалансировки данных, после чего удалите OSD командой `vitastor-disk purge /dev/vitastor/osdN-data`.
Также вес 0 можно прописать вручную прямо в etcd в ключ `/vitastor/config/osd/<НОМЕР_OSD>`, например:
```
etcdctl --endpoints=http://1.1.1.1:2379/v3 put /vitastor/config/osd/1 '{"reweight":0}'
```
## Удаление неисправного диска
Если диск уже умер, его OSD, скорее всего, уже будет/будут остановлен(ы).
В этом случае просто удалите OSD из etcd командой `vitastor-cli rm-osd НОМЕР_OSD`.
## Добавление диска
Если сервер новый, установите на него пакеты Vitastor и скопируйте файл конфигурации
`/etc/vitastor/vitastor.conf`.
После этого достаточно выполнить команду `vitastor-disk prepare /dev/nvmeXXX`, разумеется,
с параметрами, аналогичными другим OSD в вашем кластере.
## Восстановление потерянной конфигурации пулов
Если удалить или повредить ключ `/vitastor/config/pools` в etcd, все пулы будут удалены.
Не волнуйтесь, данные потеряны не будут, но вам нужно будет провести специальную
процедуру восстановления.
Сначала нужно будет восстановить конфигурацию пулов, создав пул с таким же ID и
с такими же параметрами EC/реплик, и подождать, пока PG пула появятся в `vitastor-cli status`.
Далее нужно будет добавить все OSD в исторические записи всех PG. Примерно так
(только подставьте свои PG_COUNT и POOL_ID):
```
PG_COUNT=32
POOL_ID=1
ALL_OSDS=$(etcdctl --endpoints=your_etcd_address:2379 get --keys-only --prefix /vitastor/osd/stats/ | \
perl -e '$/ = undef; $a = <>; $a =~ s/\s*$//; $a =~ s!/vitastor/osd/stats/!!g; $a =~ s/\s+/,/g; print $a')
for i in $(seq 1 $PG_COUNT); do
etcdctl --endpoints=your_etcd_address:2379 put /vitastor/pg/history/$POOL_ID/$i '{"all_peers":['$ALL_OSDS']}'
done
```
После этого все PG должны пройти peering и найти все предыдущие данные.
## Обновление Vitastor
Обычно каждая следующая версия Vitastor совместима с предыдущими и "вперёд", и "назад"
с точки зрения сетевого протокола и структур данных в etcd.
Так что по умолчанию, если на данной странице не указано обратное, считается, что для
обновления достаточно обновить пакеты и перезапустить все OSD и мониторы Vitastor в
произвольном порядке.
Обновление производится без остановки клиентов (виртуальных машин/контейнеров), для этого
достаточно обновлять серверы по одному. Однако, конечно, чтобы запущенные виртуальные машины
начали использовать новую версию клиентской библиотеки, их тоже нужно перезапустить.
### 1.7.x -> 1.8.0
Обновляться с версий <= 1.7.x до версий >= 1.8.0 рекомендуется с полной остановкой
сначала клиентов, а затем кластера, так как в 1.8.0 исправлена проблема (неконсистентность
потоков событий от etcd), способная приводить к появлению incomplete объектов в EC-пулах
и, хоть и редко, но даже к повреждению данных при массовых перезапусках OSD. Если вы
обновляетесь без полной остановки - это не значит, что вы обязательно столкнётесь с этой
проблемой, но лучше подстраховаться.
Также, если вы обновляетесь с версии <= 1.7.x до версии >= 1.8.0, НО <= 1.9.0: перезапустите всех
клиентов (процессы виртуальных машин можно перезапустить путём миграции на другой сервер),
иначе они зависнут, когда монитор удалит старый ключ конфигурации PG, что происходит через
24 часа после обновления.
Однако, это исправлено в 1.9.1. Так что, если вы обновляетесь с <= 1.7.x сразу до >= 1.9.1,
вам НЕ нужно сразу перезапускать всех клиентов - они будут работать, как раньше. Минус,
правда, в том, что старый ключ конфигурации PG (`/vitastor/config/pgs`) будет нужно удалить
вам из etcd вручную - после того, как вы убедитесь, что все клиенты перезапущены.
### 1.1.x -> 1.2.0
Обновляться с версий <= 1.1.x до версий >= 1.2.0, если вы используете EC n+k и k>=2,
рекомендуется с временной остановкой кластера — сначала нужно остановить всех клиентов,
потом все OSD, потом обновить и запустить всё обратно — из-за нескольких багов, которые
могли приводить к некорректному чтению данных в деградированных EC-пулах.
### 0.8.7 -> 0.9.0
Версии <= 0.8.7 несовместимы с версиями >= 0.9.0, поэтому при обновлении с <= 0.8.7
нужно сначала обновиться до 0.8.8 или 0.8.9, а уже потом до любых версий >= 0.9.x.
Иначе клиентский ввод-вывод зависнет до завершения обновления.
### 0.5.x -> 0.6.x
Обновление с версий 0.5.x и более ранних до 0.6.x и более поздних не поддерживается.
## Откат версии
Откат (понижение версии) тоже свободно разрешён, кроме указанных ниже случаев:
### 1.8.0 -> 1.7.1
Перед понижением версии с >= 1.8.0 до <= 1.7.1 вы должны скопировать ключ
etcd `/vitastor/pg/config` в `/vitastor/config/pgs`:
```
etcdctl --endpoints=http://... get --print-value-only /vitastor/pg/config | \
etcdctl --endpoints=http://... put /vitastor/config/pgs
```
После этого можно просто установить более старые пакеты и перезапустить все сервисы.
Если вы откатили версию, не скопировав предварительно этот ключ - выполните "добавление всех
OSD в исторические записи всех PG" из раздела [Восстановление потерянной конфигурации пулов](#восстановление-потерянной-конфигурации-пулов).
### 1.0.0 -> 0.9.x
В версии 1.0.0 поменялся дисковый формат, поэтому OSD, созданные на версии >= 1.0.0,
нельзя откатить до версии 0.9.x и более ранних.
### 0.8.0 -> 0.7.x
В версиях ранее 0.8.0 нет vitastor-disk, значит, созданные им OSD не запустятся на
более ранних версиях (0.4.x - 0.7.x). :-)
## Потребление памяти OSD
Основное потребление памяти складывается из:
- Индекс метаданных: `размеранных`/[`block_size`](../config/layout-cluster.ru.md#block_size) * `примерно 1.1` * `32` байт.
Потребляется всегда.
- Копия дисковой области метаданных: `размеранных`/[`block_size`](../config/layout-cluster.ru.md#block_size) * `28` байт.
Потребляется, если не отключена настройка [inmemory_metadata](../config/osd.ru.md#inmemory_metadata).
- Битмапы: `размеранных`/[`bitmap_granularity`](../config/layout-cluster.ru.md#bitmap_granularity)/`8` * `2` байт.
Потребляется всегда.
- Индекс журнала: от 0 до, приблизительно, размера журнала. Потребляется всегда.
- Копия дисковой области журнала: в точности размер журнала. Потребляется,
если не отключена настройка [inmemory_journal](../config/osd.ru.md#inmemory_journal).
- Контрольные суммы: `размеранных`/[`csum_block_size`](../config/osd.ru.md#csum_block_size) * `4` байт.
Потребляется, если включены контрольные суммы и не отключена настройка [inmemory_metadata](../config/osd.ru.md#inmemory_metadata).
bitmap_granularity, как правило, никогда не меняется и равен 4 килобайтам.
Таким образом, при SSD-настройках по умолчанию (block_size=128k, journal_size=32M, csum_block_size=4k) потребляется:
- Метаданные и битмапы: ~600 МБ на 1 ТБ данных
- Журнал: до 64 МБ на 1 OSD
- Контрольные суммы: 1 ГБ на 1 ТБ данных
При HDD-настройках по умолчанию (block_size=1M, journal_size=128M, csum_block_size=32k):
- Метаданные и битмапы: ~128 МБ на 1 ТБ данных
- Журнал: до 256 МБ на 1 OSD
- Контрольные суммы: 128 МБ на 1 ТБ данных

View File

@ -16,7 +16,6 @@ It supports the following commands:
- [create](#create) - [create](#create)
- [snap-create](#create) - [snap-create](#create)
- [modify](#modify) - [modify](#modify)
- [dd](#dd)
- [rm](#rm) - [rm](#rm)
- [flatten](#flatten) - [flatten](#flatten)
- [rm-data](#rm-data) - [rm-data](#rm-data)
@ -25,20 +24,11 @@ It supports the following commands:
- [fix](#fix) - [fix](#fix)
- [alloc-osd](#alloc-osd) - [alloc-osd](#alloc-osd)
- [rm-osd](#rm-osd) - [rm-osd](#rm-osd)
- [osd-tree](#osd-tree)
- [ls-osd](#ls-osd)
- [modify-osd](#modify-osd)
- [pg-list](#pg-list)
- [create-pool](#create-pool)
- [modify-pool](#modify-pool)
- [ls-pools](#ls-pools)
- [rm-pool](#rm-pool)
Global options: Global options:
``` ```
--config_file FILE Path to Vitastor configuration file --etcd_address ADDR Etcd connection address
--etcd_address URL Etcd connection address
--iodepth N Send N operations in parallel to each OSD when possible (default 32) --iodepth N Send N operations in parallel to each OSD when possible (default 32)
--parallel_osds M Work with M osds in parallel when possible (default 4) --parallel_osds M Work with M osds in parallel when possible (default 4)
--progress 1|0 Report progress (default 1) --progress 1|0 Report progress (default 1)
@ -140,69 +130,25 @@ See also about [how to export snapshots](qemu.en.md#exporting-snapshots).
## modify ## modify
`vitastor-cli modify <name> [--rename <new-name>] [--resize <size>] [--readonly | --readwrite] [-f|--force] [--down-ok]` `vitastor-cli modify <name> [--rename <new-name>] [--resize <size>] [--readonly | --readwrite] [-f|--force]`
Rename, resize image or change its readonly status. Images with children can't be made read-write. Rename, resize image or change its readonly status. Images with children can't be made read-write.
If the new size is smaller than the old size, extra data will be purged. If the new size is smaller than the old size, extra data will be purged.
You should resize file system in the image, if present, before shrinking it. You should resize file system in the image, if present, before shrinking it.
* `-f|--force` - Proceed with shrinking or setting readwrite flag even if the image has children.
* `--down-ok` - Proceed with shrinking even if some data will be left on unavailable OSDs.
## dd
``` ```
vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \ -f|--force Proceed with shrinking or setting readwrite flag even if the image has children.
[count=N] [seek/oseek=N] [skip/iseek=M] [iodepth=N] [status=progress] \
[conv=nocreat,noerror,nofsync,trunc,nosparse] [iflag=direct] [oflag=direct,append]
``` ```
Copy data between Vitastor images, files and pipes.
Options can be specified in classic dd style (`key=value`) or like usual (`--key value`).
| <!-- --> | <!-- --> |
|-----------------|-------------------------------------------------------------------------|
| `iimg=<image>` | Copy from Vitastor image `<image>` |
| `if=<file>` | Copy from file `<file>` |
| `oimg=<image>` | Copy to Vitastor image `<image>` |
| `of=<file>` | Copy to file `<file>` |
| `bs=1M` | Set copy block size |
| `count=N` | Copy only N input blocks. If N ends in B it counts bytes, not blocks |
| `seek/oseek=N` | Skip N output blocks. If N ends in B it counts bytes, not blocks |
| `skip/iseek=N` | Skip N input blocks. If N ends in B it counts bytes, not blocks |
| `iodepth=N` | Send N reads or writes in parallel (default 4) |
| `status=LEVEL` | The LEVEL of information to print to stderr: none/noxfer/progress |
| `size=N` | Specify size for the created output file/image (defaults to input size) |
| `iflag=direct` | For input files only: use direct I/O |
| `oflag=direct` | For output files only: use direct I/O |
| `oflag=append` | For files only: append to output file |
| `conv=nocreat` | Do not create output file/image |
| `conv=trunc` | Truncate output file/image |
| `conv=noerror` | Continue copying after errors |
| `conv=nofsync` | Do not call fsync before finishing (default behaviour is fsync) |
| `conv=nosparse` | Write all output blocks including all-zero blocks |
## rm ## rm
`vitastor-cli rm <from> [<to>] [--writers-stopped] [--down-ok]` `vitastor-cli rm <from> [<to>] [--writers-stopped]`
`vitastor-cli rm (--exact|--matching) <glob> ...` Remove `<from>` or all layers between `<from>` and `<to>` (`<to>` must be a child of `<from>`),
rebasing all their children accordingly. --writers-stopped allows merging to be a bit
Remove layer(s) and rebase all their children accordingly. more effective in case of a single 'slim' read-write child and 'fat' removed parent:
the child is merged into parent and parent is renamed to child in that case.
In the first form, remove `<from>` or layers between `<from>` and its child `<to>`. In other cases parent layers are always merged into children.
In the second form, remove all images with exact or pattern-matched names.
Options:
* `--writers-stopped` allows optimised removal in case of a single 'slim' read-write
child and 'fat' removed parent: the child is merged into parent and parent is renamed
to child in that case. In other cases parent layers are always merged into children.
* `--exact` - remove multiple images with names matching given glob patterns.
* `--matching` - remove multiple images with given names
* `--down-ok` - continue deletion/merging even if some data will be left on unavailable OSDs.
## flatten ## flatten
@ -220,7 +166,6 @@ Remove inode data without changing metadata.
--wait-list Retrieve full objects listings before starting to remove objects. --wait-list Retrieve full objects listings before starting to remove objects.
Requires more memory, but allows to show correct removal progress. Requires more memory, but allows to show correct removal progress.
--min-offset Purge only data starting with specified offset. --min-offset Purge only data starting with specified offset.
--max-offset Purge only data before specified offset.
``` ```
## merge-data ## merge-data
@ -233,9 +178,11 @@ Merge layer data without changing metadata. Merge `<from>`..`<to>` to `<target>`
## describe ## describe
`vitastor-cli describe [OPTIONS]` `vitastor-cli describe [--osds <osds>] [--object-state <states>] [--pool <pool>]
[--inode <ino>] [--min-inode <ino>] [--max-inode <ino>]
[--min-offset <offset>] [--max-offset <offset>]`
Describe unclean object locations in the cluster. Options: Describe unclean object locations in the cluster.
``` ```
--osds <osds> --osds <osds>
@ -245,8 +192,6 @@ Describe unclean object locations in the cluster. Options:
degraded, misplaced, incomplete, corrupted, inconsistent. degraded, misplaced, incomplete, corrupted, inconsistent.
--pool <pool name or number> --pool <pool name or number>
Only list objects in the given pool. Only list objects in the given pool.
--pg <pg number>
Only list objects in the given PG of the pool.
--inode, --min-inode, --max-inode --inode, --min-inode, --max-inode
Restrict listing to specific inode numbers. Restrict listing to specific inode numbers.
--min-offset, --max-offset --min-offset, --max-offset
@ -292,169 +237,3 @@ Refuses to remove OSDs with data without `--force` and `--allow-data-loss`.
With `--dry-run` only checks if deletion is possible without data loss and With `--dry-run` only checks if deletion is possible without data loss and
redundancy degradation. redundancy degradation.
## osd-tree
`vitastor-cli osd-tree [-l|--long]`
Show current OSD tree, optionally with I/O statistics if -l is specified.
Example output:
```
TYPE NAME UP SIZE USED% TAGS WEIGHT BLOCK BITMAP IMM NOOUT
host kaveri
disk nvme0n1p1
osd 3 down 100G 0 % abc,kaveri 1 128k 4k none -
osd 4 down 100G 0 % 1 128k 4k none -
disk nvme1n1p1
osd 5 down 100G 0 % abc,kaveri 1 128k 4k none -
osd 6 down 100G 0 % 1 128k 4k none -
host stump
osd 1 up 100G 37.29 % osdone 1 128k 4k all -
osd 2 up 100G 26.8 % abc 1 128k 4k all -
osd 7 up 100G 21.84 % 1 128k 4k all -
osd 8 up 100G 21.63 % 1 128k 4k all -
osd 9 up 100G 20.69 % 1 128k 4k all -
osd 10 up 100G 21.61 % 1 128k 4k all -
osd 11 up 100G 21.53 % 1 128k 4k all -
osd 12 up 100G 22.4 % 1 128k 4k all -
```
## ls-osd
`vitastor-cli osds|ls-osd|osd-ls [-l|--long]`
Show current OSDs as list, optionally with I/O statistics if -l is specified.
Example output:
```
OSD PARENT UP SIZE USED% TAGS WEIGHT BLOCK BITMAP IMM NOOUT
3 kaveri/nvme0n1p1 down 100G 0 % globl,kaveri 1 128k 4k none -
4 kaveri/nvme0n1p1 down 100G 0 % 1 128k 4k none -
5 kaveri/nvme1n1p1 down 100G 0 % globl,kaveri 1 128k 4k none -
6 kaveri/nvme1n1p1 down 100G 0 % 1 128k 4k none -
1 stump up 100G 37.29 % osdone 1 128k 4k all -
2 stump up 100G 26.8 % globl 1 128k 4k all -
7 stump up 100G 21.84 % 1 128k 4k all -
8 stump up 100G 21.63 % 1 128k 4k all -
9 stump up 100G 20.69 % 1 128k 4k all -
10 stump up 100G 21.61 % 1 128k 4k all -
11 stump up 100G 21.53 % 1 128k 4k all -
12 stump up 100G 22.4 % 1 128k 4k all -
```
## modify-osd
`vitastor-cli modify-osd [--tags tag1,tag2,...] [--reweight <number>] [--noout true/false] <osd_number>`
Set OSD reweight, tags or noout flag. See detail description in [OSD config documentation](../config/pool.en.md#osd-settings).
## pg-list
`vitastor-cli pg-list|pg-ls|list-pg|ls-pg|ls-pgs [OPTIONS] [state1+state2] [^state3] [...]`
List PGs with any of listed state filters (^ or ! in the beginning is negation). Options:
```
--pool <pool name or number> Only list PGs of the given pool.
--min <min pg number> Only list PGs with number >= min.
--max <max pg number> Only list PGs with number <= max.
```
Examples:
`vitastor-cli pg-list active+degraded`
`vitastor-cli pg-list ^active`
## create-pool
`vitastor-cli create-pool|pool-create <name> (-s <pg_size>|--ec <N>+<K>) -n <pg_count> [OPTIONS]`
Create a pool. Required parameters:
| <!-- --> | <!-- --> |
|--------------------------|---------------------------------------------------------------------------------------|
| `-s R` or `--pg_size R` | Number of replicas for replicated pools |
| `--ec N+K` | Number of data (N) and parity (K) chunks for erasure-coded pools |
| `-n N` or `--pg_count N` | PG count for the new pool (start with 10*<OSD count>/pg_size rounded to a power of 2) |
Optional parameters:
| <!-- --> | <!-- --> |
|--------------------------------|----------------------------------------------------------------------------|
| `--pg_minsize <number>` | R or N+K minus number of failures to tolerate without downtime ([details](../config/pool.en.md#pg_minsize)) |
| `--failure_domain host` | Failure domain: host, osd or a level from placement_levels. Default: host |
| `--root_node <node>` | Put pool only on child OSDs of this placement tree node |
| `--osd_tags <tag>[,<tag>]...` | Put pool only on OSDs tagged with all specified tags |
| `--block_size 128k` | Put pool only on OSDs with this data block size |
| `--bitmap_granularity 4k` | Put pool only on OSDs with this logical sector size |
| `--immediate_commit none` | Put pool only on OSDs with this or larger immediate_commit (none < small < all) |
| `--level_placement <rules>` | Use additional failure domain rules (example: "dc=112233") |
| `--raw_placement <rules>` | Specify raw PG generation rules ([details](../config/pool.en.md#raw_placement)) |
| `--primary_affinity_tags tags` | Prefer to put primary copies on OSDs with all specified tags |
| `--scrub_interval <time>` | Enable regular scrubbing for this pool. Format: number + unit s/m/h/d/M/y |
| `--used_for_fs <name>` | Mark pool as used for VitastorFS with metadata in image <name> |
| `--pg_stripe_size <number>` | Increase object grouping stripe |
| `--max_osd_combinations 10000` | Maximum number of random combinations for LP solver input |
| `--wait` | Wait for the new pool to come online |
| `-f` or `--force` | Do not check that cluster has enough OSDs to create the pool |
See also [Pool configuration](../config/pool.en.md) for detailed parameter descriptions.
Examples:
`vitastor-cli create-pool test_x4 -s 4 -n 32`
`vitastor-cli create-pool test_ec42 --ec 4+2 -n 32`
## modify-pool
`vitastor-cli modify-pool|pool-modify <id|name> [--name <new_name>] [PARAMETERS...]`
Modify an existing pool. Modifiable parameters:
```
[-s|--pg_size <number>] [--pg_minsize <number>] [-n|--pg_count <count>]
[--failure_domain <level>] [--root_node <node>] [--osd_tags <tags>] [--no_inode_stats 0|1]
[--max_osd_combinations <number>] [--primary_affinity_tags <tags>] [--scrub_interval <time>]
```
Non-modifiable parameters (changing them WILL lead to data loss):
```
[--block_size <size>] [--bitmap_granularity <size>]
[--immediate_commit <all|small|none>] [--pg_stripe_size <size>]
```
These, however, can still be modified with -f|--force.
See [create-pool](#create-pool) for parameter descriptions.
Examples:
`vitastor-cli modify-pool pool_A --name pool_B`
`vitastor-cli modify-pool 2 --pg_size 4 -n 128`
## rm-pool
`vitastor-cli rm-pool|pool-rm [--force] <id|name>`
Remove a pool. Refuses to remove pools with images without `--force`.
## ls-pools
`vitastor-cli ls-pools|pool-ls|ls-pool|pools [-l] [--detail] [--sort FIELD] [-r] [-n N] [--stats] [<glob> ...]`
List pools (only matching <glob> patterns if passed).
| <!-- --> | <!-- --> |
|----------------------|-------------------------------------------------------|
| `-l` or `--long` | Also report I/O statistics |
| `--detail` | Use list format (not table), show all details |
| `--sort FIELD` | Sort by specified field (see fields in --json output) |
| `-r` or `--reverse` | Sort in descending order |
| `-n` or `--count N` | Only list first N items |

View File

@ -17,27 +17,17 @@ vitastor-cli - интерфейс командной строки для адм
- [create](#create) - [create](#create)
- [snap-create](#create) - [snap-create](#create)
- [modify](#modify) - [modify](#modify)
- [dd](#dd)
- [rm](#rm) - [rm](#rm)
- [flatten](#flatten) - [flatten](#flatten)
- [rm-data](#rm-data) - [rm-data](#rm-data)
- [merge-data](#merge-data) - [merge-data](#merge-data)
- [alloc-osd](#alloc-osd) - [alloc-osd](#alloc-osd)
- [rm-osd](#rm-osd) - [rm-osd](#rm-osd)
- [osd-tree](#osd-tree)
- [ls-osd](#ls-osd)
- [modify-osd](#modify-osd)
- [pg-list](#pg-list)
- [create-pool](#create-pool)
- [modify-pool](#modify-pool)
- [ls-pools](#ls-pools)
- [rm-pool](#rm-pool)
Глобальные опции: Глобальные опции:
``` ```
--config_file FILE Путь к файлу конфигурации Vitastor --etcd_address ADDR Адрес соединения с etcd
--etcd_address URL Адрес соединения с etcd
--iodepth N Отправлять параллельно N операций на каждый OSD (по умолчанию 32) --iodepth N Отправлять параллельно N операций на каждый OSD (по умолчанию 32)
--parallel_osds M Работать параллельно с M OSD (по умолчанию 4) --parallel_osds M Работать параллельно с M OSD (по умолчанию 4)
--progress 1|0 Печатать прогресс выполнения (по умолчанию 1) --progress 1|0 Печатать прогресс выполнения (по умолчанию 1)
@ -94,8 +84,8 @@ kaveri 2/1 32 0 B 10 G 0 B 100% 0%
`vitastor-cli ls [-l] [-p POOL] [--sort FIELD] [-r] [-n N] [<glob> ...]` `vitastor-cli ls [-l] [-p POOL] [--sort FIELD] [-r] [-n N] [<glob> ...]`
Показать список образов, если передан(ы) шаблон(ы) `<glob>`, то только с именами, Показать список образов, если переданы шаблоны `<glob>`, то только с именами,
соответствующими одному из шаблонов (стандартные ФС-шаблоны с * и ?). соответствующими этим шаблонам (стандартные ФС-шаблоны с * и ?).
Опции: Опции:
@ -141,7 +131,7 @@ vitastor-cli snap-create [-p|--pool <id|name>] <image>@<snapshot>
## modify ## modify
`vitastor-cli modify <name> [--rename <new-name>] [--resize <size>] [--readonly | --readwrite] [-f|--force] [--down-ok]` `vitastor-cli modify <name> [--rename <new-name>] [--resize <size>] [--readonly | --readwrite] [-f|--force]`
Изменить размер, имя образа или флаг "только для чтения". Снимать флаг "только для чтения" Изменить размер, имя образа или флаг "только для чтения". Снимать флаг "только для чтения"
и уменьшать размер образов, у которых есть дочерние клоны, без `--force` нельзя. и уменьшать размер образов, у которых есть дочерние клоны, без `--force` нельзя.
@ -149,64 +139,23 @@ vitastor-cli snap-create [-p|--pool <id|name>] <image>@<snapshot>
Если новый размер меньше старого, "лишние" данные будут удалены, поэтому перед уменьшением Если новый размер меньше старого, "лишние" данные будут удалены, поэтому перед уменьшением
образа сначала уменьшите файловую систему в нём. образа сначала уменьшите файловую систему в нём.
* `-f|--force` - Разрешить уменьшение или перевод в чтение-запись образа, у которого есть клоны.
* `--down-ok` - Разрешить уменьшение, даже если часть данных останется неудалённой на недоступных OSD.
## dd
``` ```
vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \ -f|--force Разрешить уменьшение или перевод в чтение-запись образа, у которого есть клоны.
[count=N] [seek/oseek=N] [skip/iseek=M] [iodepth=N] [status=progress] \
[conv=nocreat,noerror,nofsync,trunc,nosparse] [iflag=direct] [oflag=direct,append]
``` ```
Копировать данные между образами Vitastor, файлами и каналами.
Опции можно передавать в классическом стиле dd (`key=value`) или как обычно (`--key value`).
| <!-- --> | <!-- --> |
|-----------------|-------------------------------------------------------------------------|
| `iimg=<image>` | Копировать из образа Vitastor `<image>` |
| `if=<file>` | Копировать из файла `<file>` |
| `oimg=<image>` | Копировать в образ Vitastor `<image>` |
| `of=<file>` | Копировать в файл `<file>` |
| `bs=1M` | Задать размер блока копирования |
| `count=N` | Копировать не более N блоков. Если N заканчивается на B - то N байт. |
| `seek/oseek=N` | Пропустить N выходных блоков. Если N заканчивается на B - то N байт. |
| `skip/iseek=N` | Пропустить N входных блоков. Если N заканчивается на B - то N байт. |
| `iodepth=N` | Отправлять N чтений/записей параллельно (по умолчанию 4). |
| `status=LEVEL` | Уровень вывода в консоль: none/noxfer/progress |
| `size=N` | Задать размер выходного файла/образа (по умолчанию равен размеру входа).|
| `iflag=direct` | Только для входного файла: использовать прямой ввод-вывод |
| `oflag=direct` | Только для выходного файла: использовать прямой ввод-вывод |
| `oflag=append` | Только для файлов: дописывать в конец выходного файла |
| `conv=nocreat` | Не создавать выходной файл/образ |
| `conv=trunc` | Обрезать выходной файл/образ до размера входа |
| `conv=noerror` | Продолжать копирование после ошибок |
| `conv=nofsync` | Не вызывать fsync перед завершением |
| `conv=nosparse` | Записывать все выходные блоки, включая пустые |
## rm ## rm
`vitastor-cli rm <from> [<to>] [--writers-stopped] [--down-ok]` `vitastor-cli rm <from> [<to>] [--writers-stopped]`
`vitastor-cli rm (--exact|--matching) <glob> ...` Удалить образ `<from>` или все слои от `<from>` до `<to>` (`<to>` должен быть дочерним
образом `<from>`), одновременно меняя родительские образы их клонов (если таковые есть).
Удалить образ(ы), корректно перебазируя их дочерние образы. `--writers-stopped` позволяет чуть более эффективно удалять образы в частом случае, когда
у удаляемой цепочки есть только один дочерний образ, содержащий небольшой объём данных.
В этом случае дочерний образ вливается в родительский и удаляется, а родительский
переименовывается в дочерний.
В первой форме удаляет один образ `<from>` или все слои между `<from>` и его дочерним `<to>`. В других случаях родительские слои вливаются в дочерние.
Во второй форме, удаляет все образы с точными именами или именами, подходящими под шаблон(ы).
Опции:
* `--writers-stopped` позволяет чуть более эффективно удалять образы в частом случае, когда
у удаляемой цепочки есть только один дочерний образ, содержащий небольшой объём данных.
В этом случае дочерний образ вливается в родительский и удаляется, а родительский
переименовывается в дочерний.
* `--exact` - удалить все образы с именами, подходящими под переданные glob-шаблоны.
* `--matching` - удалить все образы с точно заданными именами.
* `--down-ok` - продолжать удаление/слияние, даже если часть данных останется неудалённой на недоступных OSD.
## flatten ## flatten
@ -225,7 +174,6 @@ vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \
--wait-list Сначала запросить полный листинг объектов, а потом начать удалять. --wait-list Сначала запросить полный листинг объектов, а потом начать удалять.
Требует больше памяти, но позволяет правильно печатать прогресс удаления. Требует больше памяти, но позволяет правильно печатать прогресс удаления.
--min-offset Удалять только данные, начиная с заданного смещения. --min-offset Удалять только данные, начиная с заданного смещения.
--max-offset Удалять только данные до (исключительно) заданного смещения.
``` ```
## merge-data ## merge-data
@ -238,10 +186,12 @@ vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \
## describe ## describe
`vitastor-cli describe [ОПЦИИ]` `vitastor-cli describe [--osds <osds>] [--object-state <состояния>] [--pool <пул>]
[--inode <номер>] [--min-inode <номер>] [--max-inode <номер>]
[--min-offset <смещение>] [--max-offset <смещение>]`
Описать состояние "грязных" объектов в кластере, то есть таких объектов, копии Описать состояние "грязных" объектов в кластере, то есть таких объектов, копии
или части которых хранятся на наборе OSD, не равном целевому. Опции: или части которых хранятся на наборе OSD, не равном целевому.
``` ```
--osds <osds> --osds <osds>
@ -256,8 +206,6 @@ vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \
- inconsistent - неконсистентный, с неоднозначным расхождением копий/частей - inconsistent - неконсистентный, с неоднозначным расхождением копий/частей
--pool <имя или ID пула> --pool <имя или ID пула>
Перечислять только объекты из заданного пула. Перечислять только объекты из заданного пула.
--pg <номер PG>
Перечислять только объекты из заданной PG пула.
--inode, --min-inode, --max-inode --inode, --min-inode, --max-inode
Перечислять только объекты из указанных номеров инодов (образов). Перечислять только объекты из указанных номеров инодов (образов).
--min-offset, --max-offset --min-offset, --max-offset
@ -306,170 +254,3 @@ vitastor-cli dd [iimg=<image> | if=<file>] [oimg=<image> | of=<file>] [bs=1M] \
С опцией `--dry-run` только проверяет, возможно ли удаление без потери данных и деградации С опцией `--dry-run` только проверяет, возможно ли удаление без потери данных и деградации
избыточности. избыточности.
## osd-tree
`vitastor-cli osd-tree [-l|--long]`
Показать дерево OSD, со статистикой ввода-вывода, если установлено -l.
Пример вывода:
```
TYPE NAME UP SIZE USED% TAGS WEIGHT BLOCK BITMAP IMM NOOUT
host kaveri
disk nvme0n1p1
osd 3 down 100G 0 % globl,kaveri 1 128k 4k none -
osd 4 down 100G 0 % 1 128k 4k none -
disk nvme1n1p1
osd 5 down 100G 0 % globl,kaveri 1 128k 4k none -
osd 6 down 100G 0 % 1 128k 4k none -
host stump
osd 1 up 100G 37.29 % osdone 1 128k 4k all -
osd 2 up 100G 26.8 % globl 1 128k 4k all -
osd 7 up 100G 21.84 % 1 128k 4k all -
osd 8 up 100G 21.63 % 1 128k 4k all -
osd 9 up 100G 20.69 % 1 128k 4k all -
osd 10 up 100G 21.61 % 1 128k 4k all -
osd 11 up 100G 21.53 % 1 128k 4k all -
osd 12 up 100G 22.4 % 1 128k 4k all -
```
## ls-osd
`vitastor-cli osds|ls-osd|osd-ls [-l|--long]`
Показать список OSD, со статистикой ввода-вывода, если установлено -l.
Пример вывода:
```
OSD PARENT UP SIZE USED% TAGS WEIGHT BLOCK BITMAP IMM NOOUT
3 kaveri/nvme0n1p1 down 100G 0 % globl,kaveri 1 128k 4k none -
4 kaveri/nvme0n1p1 down 100G 0 % 1 128k 4k none -
5 kaveri/nvme1n1p1 down 100G 0 % globl,kaveri 1 128k 4k none -
6 kaveri/nvme1n1p1 down 100G 0 % 1 128k 4k none -
1 stump up 100G 37.29 % osdone 1 128k 4k all -
2 stump up 100G 26.8 % globl 1 128k 4k all -
7 stump up 100G 21.84 % 1 128k 4k all -
8 stump up 100G 21.63 % 1 128k 4k all -
9 stump up 100G 20.69 % 1 128k 4k all -
10 stump up 100G 21.61 % 1 128k 4k all -
11 stump up 100G 21.53 % 1 128k 4k all -
12 stump up 100G 22.4 % 1 128k 4k all -
```
## modify-osd
`vitastor-cli modify-osd [--tags tag1,tag2,...] [--reweight <number>] [--noout true/false] <osd_number>`
Установить вес OSD, теги или флаг noout. Смотрите подробное описание в [документации настроек OSD](../config/pool.ru.md#настройки-osd).
## pg-list
`vitastor-cli pg-list|pg-ls|list-pg|ls-pg|ls-pgs [OPTIONS] [state1+state2] [^state3] [...]`
Вывести список PG с состояними, удовлетворяющими любому из переданных фильтров (^ или !
в начале фильтра означает отрицание). Опции:
```
--pool <pool name or number> Only list PGs of the given pool.
--min <min pg number> Only list PGs with number >= min.
--max <max pg number> Only list PGs with number <= max.
```
Примеры:
`vitastor-cli pg-list active+degraded`
`vitastor-cli pg-list ^active`
## create-pool
`vitastor-cli create-pool|pool-create <name> (-s <pg_size>|--ec <N>+<K>) -n <pg_count> [OPTIONS]`
Создать пул. Обязательные параметры:
| <!-- --> | <!-- --> |
|---------------------------|---------------------------------------------------------------------------------------------|
| `-s R` или `--pg_size R` | Число копий данных для реплицированных пулов |
| `--ec N+K` | Число частей данных (N) и чётности (K) для пулов с кодами коррекции ошибок |
| `-n N` или `--pg_count N` | Число PG для нового пула (начните с 10*<число OSD>/pg_size, округлённого до степени двойки) |
Необязательные параметры:
| <!-- --> | <!-- --> |
|--------------------------------|----------------------------------------------------------------------------|
| `--pg_minsize <number>` | (R или N+K) минус число разрешённых отказов без остановки пула ([подробнее](../config/pool.ru.md#pg_minsize)) |
| `--failure_domain host` | Домен отказа: host, osd или другой из placement_levels. По умолчанию: host |
| `--root_node <node>` | Использовать для пула только дочерние OSD этого узла дерева размещения |
| `--osd_tags <tag>[,<tag>]...` | ...только OSD со всеми заданными тегами |
| `--block_size 128k` | ...только OSD с данным размером блока |
| `--bitmap_granularity 4k` | ...только OSD с данным размером логического сектора |
| `--immediate_commit none` | ...только OSD с этим или большим immediate_commit (none < small < all) |
| `--level_placement <rules>` | Задать правила дополнительных доменов отказа (пример: "dc=112233") |
| `--raw_placement <rules>` | Задать низкоуровневые правила генерации PG ([детали](../config/pool.ru.md#raw_placement)) |
| `--primary_affinity_tags tags` | Предпочитать OSD со всеми данными тегами для роли первичных |
| `--scrub_interval <time>` | Включить скрабы с заданным интервалом времени (число + единица s/m/h/d/M/y) |
| `--pg_stripe_size <number>` | Увеличить блок группировки объектов по PG |
| `--max_osd_combinations 10000` | Максимальное число случайных комбинаций OSD для ЛП-солвера |
| `--wait` | Подождать, пока новый пул будет активирован |
| `-f` или `--force` | Не проверять, что в кластере достаточно доменов отказа для создания пула |
Подробно о параметрах см. [Конфигурация пулов](../config/pool.ru.md).
Примеры:
`vitastor-cli create-pool test_x4 -s 4 -n 32`
`vitastor-cli create-pool test_ec42 --ec 4+2 -n 32`
## modify-pool
`vitastor-cli modify-pool|pool-modify <id|name> [--name <new_name>] [PARAMETERS...]`
Изменить настройки существующего пула. Изменяемые параметры:
```
[-s|--pg_size <number>] [--pg_minsize <number>] [-n|--pg_count <count>]
[--failure_domain <level>] [--root_node <node>] [--osd_tags <tags>]
[--max_osd_combinations <number>] [--primary_affinity_tags <tags>] [--scrub_interval <time>]
```
Неизменяемые параметры (их изменение ПРИВЕДЁТ к потере данных):
```
[--block_size <size>] [--bitmap_granularity <size>]
[--immediate_commit <all|small|none>] [--pg_stripe_size <size>]
```
Эти параметры можно изменить, только если явно передать опцию -f или --force.
Описания параметров смотрите в [create-pool](#create-pool).
Примеры:
`vitastor-cli modify-pool pool_A --name pool_B`
`vitastor-cli modify-pool 2 --pg_size 4 -n 128`
## rm-pool
`vitastor-cli rm-pool|pool-rm [--force] <id|name>`
Удалить пул. Отказывается удалять пул, в котором ещё есть образы, без `--force`.
## ls-pools
`vitastor-cli ls-pools|pool-ls|ls-pool|pools [-l] [--detail] [--sort FIELD] [-r] [-n N] [--stats] [<glob> ...]`
Показать список пулов. Если передан(ы) шаблон(ы) `<glob>`, то только с именами,
соответствующими одному из шаблонов (стандартные ФС-шаблоны с * и ?).
| <!-- --> | <!-- --> |
|-----------------------|------------------------------------------------------------|
| `-l` или `--long` | Вывести также статистику ввода-вывода |
| `--detail` | Максимально подробный вывод в виде списка (а не таблицы) |
| `--sort FIELD` | Сортировать по заданному полю (поля см. в выводе с --json) |
| `-r` или `--reverse` | Сортировать в обратном порядке |
| `-n` или `--count N` | Выводить только первые N записей |

View File

@ -13,12 +13,10 @@ It supports the following commands:
- [prepare](#prepare) - [prepare](#prepare)
- [upgrade-simple](#upgrade-simple) - [upgrade-simple](#upgrade-simple)
- [resize](#resize) - [resize](#resize)
- [raw-resize](#raw-resize)
- [start/stop/restart/enable/disable](#start/stop/restart/enable/disable) - [start/stop/restart/enable/disable](#start/stop/restart/enable/disable)
- [purge](#purge) - [purge](#purge)
- [read-sb](#read-sb) - [read-sb](#read-sb)
- [write-sb](#write-sb) - [write-sb](#write-sb)
- [update-sb](#update-sb)
- [udev](#udev) - [udev](#udev)
- [exec-osd](#exec-osd) - [exec-osd](#exec-osd)
- [pre-exec](#pre-exec) - [pre-exec](#pre-exec)
@ -51,16 +49,12 @@ Options (automatic mode):
--osd_per_disk <N> --osd_per_disk <N>
Create <N> OSDs on each disk (default 1) Create <N> OSDs on each disk (default 1)
--hybrid --hybrid
Prepare hybrid (HDD+SSD, NVMe+SATA or etc) OSDs using provided devices. By default, Prepare hybrid (HDD+SSD) OSDs using provided devices. SSDs will be used for
any passed SSDs will be used for journals and metadata, HDDs will be used for data, journals and metadata, HDDs will be used for data. Partitions for journals and
but you can override this behaviour with --fast-devices option. Journal and metadata metadata will be created automatically. Whether disks are SSD or HDD is decided
partitions will be created automatically. In the default mode, SSD and HDD disks by the `/sys/block/.../queue/rotational` flag. In hybrid mode, default object
are distinguished by the `/sys/block/.../queue/rotational` flag. When HDDs are used size is 1 MB instead of 128 KB, default journal size is 1 GB instead of 32 MB,
for data in hybrid mode, default block_size is 1 MB instead of 128 KB, default journal and throttle_small_writes is enabled by default.
size is 1 GB instead of 32 MB, and throttle_small_writes is enabled by default.
--fast-devices /dev/nvmeX,/dev/nvmeY
In --hybrid mode, use these devices for journal and metadata instead of auto-detecting
and extracting them from the main [devices...] list.
--disable_data_fsync auto --disable_data_fsync auto
Disable data device cache and fsync (1/yes/true = on, default auto) Disable data device cache and fsync (1/yes/true = on, default auto)
--disable_meta_fsync auto --disable_meta_fsync auto
@ -92,8 +86,6 @@ Options (both modes):
--journal_size 1G/32M Set journal size (area or partition size) --journal_size 1G/32M Set journal size (area or partition size)
--block_size 1M/128k Set blockstore object size --block_size 1M/128k Set blockstore object size
--bitmap_granularity 4k Set bitmap granularity --bitmap_granularity 4k Set bitmap granularity
--data_csum_type none Set data checksum type (crc32c or none)
--csum_block_size 4k/32k Set data checksum block size (SSD/HDD default)
--data_device_block 4k Override data device block size --data_device_block 4k Override data device block size
--meta_device_block 4k Override metadata device block size --meta_device_block 4k Override metadata device block size
--journal_device_block 4k Override journal device block size --journal_device_block 4k Override journal device block size
@ -108,9 +100,8 @@ checks the device cache status on start and tries to disable cache for SATA/SAS
If it doesn't succeed it issues a warning in the system log. If it doesn't succeed it issues a warning in the system log.
You can also pass other OSD options here as arguments and they'll be persisted You can also pass other OSD options here as arguments and they'll be persisted
in the superblock: cached_io_data, cached_io_meta, cached_io_journal, to the superblock: max_write_iodepth, max_write_iodepth, min_flusher_count,
inmemory_metadata, inmemory_journal, max_write_iodepth, max_flusher_count, inmemory_metadata, inmemory_journal, journal_sector_buffer_count,
min_flusher_count, max_flusher_count, journal_sector_buffer_count,
journal_no_same_sector_overwrites, throttle_small_writes, throttle_target_iops, journal_no_same_sector_overwrites, throttle_small_writes, throttle_target_iops,
throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us. throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us.
See [Runtime OSD Parameters](../config/osd.en.md) for details. See [Runtime OSD Parameters](../config/osd.en.md) for details.
@ -132,49 +123,25 @@ Requires the `sfdisk` utility.
## resize ## resize
`vitastor-disk resize <osd_num>|<osd_device> [OPTIONS]` `vitastor-disk resize <ALL_OSD_PARAMETERS> <NEW_LAYOUT> [--iodepth 32]`
Resize data area and/or move journal and metadata: Resize data area and/or rewrite/move journal and metadata.
| <!-- --> | <!-- --> |
|---------------------------|----------------------------------------|
| `--move-journal TARGET` | move journal to `TARGET` |
| `--move-meta TARGET` | move metadata to `TARGET` |
| `--journal-size NEW_SIZE` | resize journal to `NEW_SIZE` |
| `--data-size NEW_SIZE` | resize data device to `NEW_SIZE` |
| `--dry-run` | only show new layout, do not apply it |
`NEW_SIZE` may include k/m/g/t suffixes.
`TARGET` may be one of:
| <!-- --> | <!-- --> |
|----------------|--------------------------------------------------------------------------|
| `<partition>` | move journal/metadata to an existing GPT partition |
| `<raw_device>` | create a GPT partition on `<raw_device>` and move journal/metadata to it |
| `""` | (empty string) move journal/metadata back to the data device |
## raw-resize
`vitastor-disk raw-resize <ALL_OSD_PARAMETERS> <NEW_LAYOUT> [--iodepth 32]`
Resize data area and/or rewrite/move journal and metadata (manual format).
`ALL_OSD_PARAMETERS` must include all (at least all disk-related) `ALL_OSD_PARAMETERS` must include all (at least all disk-related)
parameters from OSD command line (i.e. from systemd unit or superblock). parameters from OSD command line (i.e. from systemd unit or superblock).
`NEW_LAYOUT` may include new disk layout parameters: `NEW_LAYOUT` may include new disk layout parameters:
| <!-- --> | <!-- --> | ```
|-----------------------------|-------------------------------------------| --new_data_offset SIZE resize data area so it starts at SIZE
| `--new_data_offset SIZE` | resize data area so it starts at `SIZE` | --new_data_len SIZE resize data area to SIZE bytes
| `--new_data_len SIZE` | resize data area to `SIZE` bytes | --new_meta_device PATH use PATH for new metadata
| `--new_meta_device PATH` | use `PATH` for new metadata | --new_meta_offset SIZE make new metadata area start at SIZE
| `--new_meta_offset SIZE` | make new metadata area start at `SIZE` | --new_meta_len SIZE make new metadata area SIZE bytes long
| `--new_meta_len SIZE` | make new metadata area `SIZE` bytes long | --new_journal_device PATH use PATH for new journal
| `--new_journal_device PATH` | use `PATH` for new journal | --new_journal_offset SIZE make new journal area start at SIZE
| `--new_journal_offset SIZE` | make new journal area start at `SIZE` | --new_journal_len SIZE make new journal area SIZE bytes long
| `--new_journal_len SIZE` | make new journal area `SIZE` bytes long | ```
SIZE may include k/m/g/t suffixes. If any of the new layout parameter SIZE may include k/m/g/t suffixes. If any of the new layout parameter
options are not specified, old values will be used. options are not specified, old values will be used.
@ -212,14 +179,6 @@ Try to read Vitastor OSD superblock from `<device>` and print it in JSON format.
Read JSON from STDIN and write it into Vitastor OSD superblock on `<device>`. Read JSON from STDIN and write it into Vitastor OSD superblock on `<device>`.
## update-sb
`vitastor-disk update-sb <device> [--force] [--<parameter> <value>] [...]`
Read Vitastor OSD superblock from <device>, update parameters in it and write it back.
`--force` allows to ignore validation errors.
## udev ## udev
`vitastor-disk udev <device>` `vitastor-disk udev <device>`
@ -246,14 +205,10 @@ Intended for use from startup scripts (i.e. from systemd units).
## dump-journal ## dump-journal
`vitastor-disk dump-journal [OPTIONS] <osd_device>`
`vitastor-disk dump-journal [OPTIONS] <journal_file> <journal_block_size> <offset> <size>` `vitastor-disk dump-journal [OPTIONS] <journal_file> <journal_block_size> <offset> <size>`
Dump journal in human-readable or JSON (if `--json` is specified) format. Dump journal in human-readable or JSON (if `--json` is specified) format.
You can specify any OSD device (data, metadata or journal), or the layout manually.
Options: Options:
``` ```
@ -266,35 +221,23 @@ Options:
## write-journal ## write-journal
`vitastor-disk write-journal <osd_device>`
`vitastor-disk write-journal <journal_file> <journal_block_size> <bitmap_size> <offset> <size>` `vitastor-disk write-journal <journal_file> <journal_block_size> <bitmap_size> <offset> <size>`
Write journal from JSON taken from standard input in the same format as produced by Write journal from JSON taken from standard input in the same format as produced by
`dump-journal --json --format data`. `dump-journal --json --format data`.
You can specify any OSD device (data, metadata or journal), or the layout manually.
## dump-meta ## dump-meta
`vitastor-disk dump-meta <osd_device>`
`vitastor-disk dump-meta <meta_file> <meta_block_size> <offset> <size>` `vitastor-disk dump-meta <meta_file> <meta_block_size> <offset> <size>`
Dump metadata in JSON format. Dump metadata in JSON format.
You can specify any OSD device (data, metadata or journal), or the layout manually.
## write-meta ## write-meta
`vitastor-disk write-meta <osd_device>`
`vitastor-disk write-meta <meta_file> <offset> <size>` `vitastor-disk write-meta <meta_file> <offset> <size>`
Write metadata from JSON taken from standard input in the same format as produced by `dump-meta`. Write metadata from JSON taken from standard input in the same format as produced by `dump-meta`.
You can specify any OSD device (data, metadata or journal), or the layout manually.
## simple-offsets ## simple-offsets
`vitastor-disk simple-offsets <device>` `vitastor-disk simple-offsets <device>`
@ -307,8 +250,6 @@ Options (see also [Cluster-Wide Disk Layout Parameters](../config/layout-cluster
--object_size 128k Set blockstore block size --object_size 128k Set blockstore block size
--bitmap_granularity 4k Set bitmap granularity --bitmap_granularity 4k Set bitmap granularity
--journal_size 32M Set journal size --journal_size 32M Set journal size
--data_csum_type none Set data checksum type (crc32c or none)
--csum_block_size 4k Set data checksum block size
--device_block_size 4k Set device block size --device_block_size 4k Set device block size
--journal_offset 0 Set journal offset --journal_offset 0 Set journal offset
--device_size 0 Set device size --device_size 0 Set device size

View File

@ -13,12 +13,10 @@ vitastor-disk - инструмент командной строки для уп
- [prepare](#prepare) - [prepare](#prepare)
- [upgrade-simple](#upgrade-simple) - [upgrade-simple](#upgrade-simple)
- [resize](#resize) - [resize](#resize)
- [raw-resize](#raw-resize)
- [start/stop/restart/enable/disable](#start/stop/restart/enable/disable) - [start/stop/restart/enable/disable](#start/stop/restart/enable/disable)
- [purge](#purge) - [purge](#purge)
- [read-sb](#read-sb) - [read-sb](#read-sb)
- [write-sb](#write-sb) - [write-sb](#write-sb)
- [update-sb](#update-sb)
- [udev](#udev) - [udev](#udev)
- [exec-osd](#exec-osd) - [exec-osd](#exec-osd)
- [pre-exec](#pre-exec) - [pre-exec](#pre-exec)
@ -51,17 +49,12 @@ vitastor-disk - инструмент командной строки для уп
--osd_per_disk <N> --osd_per_disk <N>
Создавать по несколько (<N>) OSD на каждом диске (по умолчанию 1) Создавать по несколько (<N>) OSD на каждом диске (по умолчанию 1)
--hybrid --hybrid
Инициализировать гибридные (HDD+SSD, NVMe+SATA и т.п.) OSD на указанных дисках. Инициализировать гибридные (HDD+SSD) OSD на указанных дисках. SSD будут
По умолчанию, SSD будут использованы для журналов и метаданных, а HDD - для данных, использованы для журналов и метаданных, а HDD - для данных. Разделы для журналов
но вы можете поменять это поведение опцией --fast-devices. Разделы для журналов и метаданных будут созданы автоматически. Является ли диск SSD или HDD, определяется
и метаданных будут созданы автоматически. В режиме по умолчанию SSD и HDD-диски по флагу `/sys/block/.../queue/rotational`. В гибридном режиме по умолчанию
различаются по флагу `/sys/block/.../queue/rotational`. Когда в гибридном режиме используется размер объекта 1 МБ вместо 128 КБ, размер журнала 1 ГБ вместо 32 МБ
для данных используются HDD, по умолчанию размер блока устанавливается 1 МБ вместо и включённый throttle_small_writes.
128 КБ, размер журнала 1 ГБ вместо 32 МБ, и throttle_small_writes включается по
умолчанию.
--fast-devices /dev/nvmeX,/dev/nvmeY
Использовать данные диски для журналов и метаданных в гибридном режиме вместо их
автоопределения и извлечения из основного списка [devices...].
--disable_data_fsync auto --disable_data_fsync auto
Отключать кэш и fsync-и для устройств данных. (1/yes/true = да, по умолчанию автоопределение) Отключать кэш и fsync-и для устройств данных. (1/yes/true = да, по умолчанию автоопределение)
--disable_meta_fsync auto --disable_meta_fsync auto
@ -94,8 +87,6 @@ vitastor-disk - инструмент командной строки для уп
--journal_size 1G/32M Задать размер журнала (области или раздела журнала) --journal_size 1G/32M Задать размер журнала (области или раздела журнала)
--block_size 1M/128k Задать размер объекта хранилища --block_size 1M/128k Задать размер объекта хранилища
--bitmap_granularity 4k Задать гранулярность битовых карт --bitmap_granularity 4k Задать гранулярность битовых карт
--data_csum_type none Задать тип контрольных сумм (crc32c или none)
--csum_block_size 4k/32k Задать размер блока расчёта контрольных сумм (дефолт SSD/HDD)
--data_device_block 4k Задать размер блока устройства данных --data_device_block 4k Задать размер блока устройства данных
--meta_device_block 4k Задать размер блока метаданных --meta_device_block 4k Задать размер блока метаданных
--journal_device_block 4k Задать размер блока журнала --journal_device_block 4k Задать размер блока журнала
@ -110,9 +101,8 @@ vitastor-disk - инструмент командной строки для уп
это не удаётся, в системный журнал выводится предупреждение. это не удаётся, в системный журнал выводится предупреждение.
Вы можете передать данной команде и некоторые другие опции OSD в качестве аргументов Вы можете передать данной команде и некоторые другие опции OSD в качестве аргументов
и они тоже будут сохранены в суперблок: cached_io_data, cached_io_meta, и они тоже будут сохранены в суперблок: max_write_iodepth, max_write_iodepth, min_flusher_count,
cached_io_journal, inmemory_metadata, inmemory_journal, max_write_iodepth, max_flusher_count, inmemory_metadata, inmemory_journal, journal_sector_buffer_count,
min_flusher_count, max_flusher_count, journal_sector_buffer_count,
journal_no_same_sector_overwrites, throttle_small_writes, throttle_target_iops, journal_no_same_sector_overwrites, throttle_small_writes, throttle_target_iops,
throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us. throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us.
Читайте об этих параметрах подробнее в разделе [Изменяемые параметры OSD](../config/osd.ru.md). Читайте об этих параметрах подробнее в разделе [Изменяемые параметры OSD](../config/osd.ru.md).
@ -135,51 +125,27 @@ throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us.
## resize ## resize
`vitastor-disk resize <osd_num>|<osd_device> [OPTIONS]` `vitastor-disk resize <ALL_OSD_PARAMETERS> <NEW_LAYOUT> [--iodepth 32]`
Изменить размер области данных и/или переместить журнал и метаданные: Изменить размер области данных и/или переместить журнал и метаданные.
| <!-- --> | <!-- --> | В `ALL_OSD_PARAMETERS` нужно указать все относящиеся к диску параметры OSD
|-------------------------------|------------------------------------------------|
| `--move-journal ЦЕЛЬ` | переместить журнал на `ЦЕЛЬ` |
| `--move-meta ЦЕЛЬ` | переместить метаданные на `ЦЕЛЬ` |
| `--journal-size НОВЫЙ_РАЗМЕР` | изменить размер журнала на `НОВЫЙ_РАЗМЕР` |
| `--data-size НОВЫЙ_РАЗМЕР` | изменить размер диска данных на `НОВЫЙ_РАЗМЕР` |
| `--dry-run` | показать новые параметры, но не применять их |
`НОВЫЙ_РАЗМЕР` может быть указан с суффиксами k/m/g/t (кило/мега/гига/терабайт).
`ЦЕЛЬ` может быть одним из:
| <!-- --> | <!-- --> |
|-----------------|-------------------------------------------------------------------------------------|
| `<раздел>` | переместить журнал/метаданные на существующий GPT-раздел |
| `<полный_диск>` | создать GPT-раздел на диске `<полный_диск>` и переместить журнал/метаданные на него |
| `""` | (пустая строка) переместить журнал/метаданные обратно на диск данных |
## raw-resize
`vitastor-disk raw-resize <ВСЕАРАМЕТРЫ_OSD> <НОВЫЕ_РАЗМЕРЫ> [--iodepth 32]`
Изменить размер области данных и/или переместить журнал и метаданные (ручной формат).
В `ВСЕАРАМЕТРЫ_OSD` нужно указать все относящиеся к диску параметры OSD
из суперблока OSD или из файла сервиса systemd (в старых версиях). из суперблока OSD или из файла сервиса systemd (в старых версиях).
В `НОВЫЕ_РАЗМЕРЫ` нужно указать новые параметры расположения данных: В `NEW_LAYOUT` нужно указать новые параметры расположения данных:
| <!-- --> | <!-- --> | ```
|-------------------------------|-------------------------------------------------------| --new_data_offset РАЗМЕР сдвинуть начало области данных на РАЗМЕР байт
| `--new_data_offset РАЗМЕР` | сдвинуть начало области данных на `РАЗМЕР` байт | --new_data_len РАЗМЕР изменить размер области данных до РАЗМЕР байт
| `--new_data_len РАЗМЕР` | изменить размер области данных до `РАЗМЕР` байт | --new_meta_device ПУТЬ использовать ПУТЬ как новое устройство метаданных
| `--new_meta_device ПУТЬ` | использовать `ПУТЬ` как новое устройство метаданных | --new_meta_offset РАЗМЕР разместить новые метаданные по смещению РАЗМЕР байт
| `--new_meta_offset РАЗМЕР` | разместить новые метаданные по смещению `РАЗМЕР` байт | --new_meta_len РАЗМЕР сделать новые метаданные размером РАЗМЕР байт
| `--new_meta_len РАЗМЕР` | сделать новые метаданные размером `РАЗМЕР` байт | --new_journal_device ПУТЬ использовать ПУТЬ как новое устройство журнала
| `--new_journal_device ПУТЬ` | использовать `ПУТЬ` как новое устройство журнала | --new_journal_offset РАЗМЕР разместить новый журнал по смещению РАЗМЕР байт
| `--new_journal_offset РАЗМЕР` | разместить новый журнал по смещению `РАЗМЕР` байт | --new_journal_len РАЗМЕР сделать новый журнал размером РАЗМЕР байт
| `--new_journal_len РАЗМЕР` | сделать новый журнал размером `РАЗМЕР` байт | ```
`РАЗМЕР` может быть указан с суффиксами k/m/g/t. Если любой из новых параметров РАЗМЕР может быть указан с суффиксами k/m/g/t. Если любой из новых параметров
расположения не указан, он принимается равным старому значению. расположения не указан, он принимается равным старому значению.
## start/stop/restart/enable/disable ## start/stop/restart/enable/disable
@ -218,15 +184,6 @@ throttle_target_mbs, throttle_target_parallelism, throttle_threshold_us.
Прочитать JSON со стандартного ввода и записать его в суперблок OSD на диск `<device>`. Прочитать JSON со стандартного ввода и записать его в суперблок OSD на диск `<device>`.
## update-sb
`vitastor-disk update-sb <device> [--force] [--<параметр> <значение>] [...]`
Прочитать суперблок OSD с диска `<device>`, изменить в нём заданные параметры и записать обратно.
Опция `--force` позволяет читать суперблок, даже если он считается некорректным
из-за ошибок валидации.
## udev ## udev
`vitastor-disk udev <device>` `vitastor-disk udev <device>`
@ -254,15 +211,10 @@ OSD отключены fsync-и.
## dump-journal ## dump-journal
`vitastor-disk dump-journal <osd_device>`
`vitastor-disk dump-journal [OPTIONS] <journal_file> <journal_block_size> <offset> <size>` `vitastor-disk dump-journal [OPTIONS] <journal_file> <journal_block_size> <offset> <size>`
Вывести журнал в человекочитаемом или в JSON (с опцией `--json`) виде. Вывести журнал в человекочитаемом или в JSON (с опцией `--json`) виде.
Вы можете указать любой раздел OSD - данных, журнала или метаданных - либо указать все
параметры расположения вручную.
Опции: Опции:
``` ```
@ -275,37 +227,22 @@ OSD отключены fsync-и.
## write-journal ## write-journal
`vitastor-disk write-journal <osd_device>`
`vitastor-disk write-journal <journal_file> <journal_block_size> <bitmap_size> <offset> <size>` `vitastor-disk write-journal <journal_file> <journal_block_size> <bitmap_size> <offset> <size>`
Записать журнал из JSON со стандартного ввода в формате, аналогичном `dump-journal --json --format data`. Записать журнал из JSON со стандартного ввода в формате, аналогичном `dump-journal --json --format data`.
Вы можете указать любой раздел OSD - данных, журнала или метаданных - либо указать все
параметры расположения вручную.
## dump-meta ## dump-meta
`vitastor-disk dump-meta <osd_device>`
`vitastor-disk dump-meta <meta_file> <meta_block_size> <offset> <size>` `vitastor-disk dump-meta <meta_file> <meta_block_size> <offset> <size>`
Вывести метаданные в формате JSON. Вывести метаданные в формате JSON.
Вы можете указать любой раздел OSD - данных, журнала или метаданных - либо указать все
параметры расположения вручную.
## write-meta ## write-meta
`vitastor-disk write-meta <osd_device>`
`vitastor-disk write-meta <meta_file> <offset> <size>` `vitastor-disk write-meta <meta_file> <offset> <size>`
Записать метаданные из JSON со стандартного ввода в формате, аналогичном `dump-meta`. Записать метаданные из JSON со стандартного ввода в формате, аналогичном `dump-meta`.
Вы можете указать любой раздел OSD - данных, журнала или метаданных - либо указать все
параметры расположения вручную.
## simple-offsets ## simple-offsets
`vitastor-disk simple-offsets <device>` `vitastor-disk simple-offsets <device>`
@ -318,8 +255,6 @@ OSD отключены fsync-и.
--object_size 128k Размер блока хранилища --object_size 128k Размер блока хранилища
--bitmap_granularity 4k Гранулярность битовых карт --bitmap_granularity 4k Гранулярность битовых карт
--journal_size 32M Размер журнала --journal_size 32M Размер журнала
--data_csum_type none Задать тип контрольных сумм (crc32c или none)
--csum_block_size 4k Задать размер блока расчёта контрольных сумм
--device_block_size 4k Размер блока устройства --device_block_size 4k Размер блока устройства
--journal_offset 0 Смещение журнала --journal_offset 0 Смещение журнала
--device_size 0 Размер устройства --device_size 0 Размер устройства

View File

@ -14,13 +14,10 @@ Vitastor has a fio driver which can be installed from the package vitastor-fio.
Use the following command as an example to run tests with fio against a Vitastor cluster: Use the following command as an example to run tests with fio against a Vitastor cluster:
``` ```
fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -image=testimg fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -etcd=10.115.0.10:2379/v3 -image=testimg
``` ```
If you don't want to access your image by name, you can specify pool number, inode number and size If you don't want to access your image by name, you can specify pool number, inode number and size
(`-pool=1 -inode=1 -size=400G`) instead of the image name (`-image=testimg`). (`-pool=1 -inode=1 -size=400G`) instead of the image name (`-image=testimg`).
You can also specify etcd address(es) explicitly by adding `-etcd=10.115.0.10:2379/v3`, or you See exact fio commands to use for benchmarking [here](../performance/understanding.en.md#команды-fio).
can override configuration file path by adding `-conf=/etc/vitastor/vitastor.conf`.
See exact fio commands to use for benchmarking [here](../performance/understanding.en.md#fio-commands).

View File

@ -14,13 +14,10 @@
Используйте следующую команду как пример для запуска тестов кластера Vitastor через fio: Используйте следующую команду как пример для запуска тестов кластера Vitastor через fio:
``` ```
fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -image=testimg fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -etcd=10.115.0.10:2379/v3 -image=testimg
``` ```
Вместо обращения к образу по имени (`-image=testimg`) можно указать номер пула, номер инода и размер: Вместо обращения к образу по имени (`-image=testimg`) можно указать номер пула, номер инода и размер:
`-pool=1 -inode=1 -size=400G`. `-pool=1 -inode=1 -size=400G`.
Вы также можете задать адрес(а) подключения к etcd явно, добавив `-etcd=10.115.0.10:2379/v3`,
или переопределить путь к файлу конфигурации, добавив `-conf=/etc/vitastor/vitastor.conf`.
Конкретные команды fio для тестирования производительности можно посмотреть [здесь](../performance/understanding.ru.md#команды-fio). Конкретные команды fio для тестирования производительности можно посмотреть [здесь](../performance/understanding.ru.md#команды-fio).

Some files were not shown because too many files have changed in this diff Show More