#include "blockstore.h" void blockstore::enqueue_write(blockstore_operation *op) { // Assign version number auto dirty_it = dirty_db.upper_bound((obj_ver_id){ .oid = op->oid, .version = UINT64_MAX, }); dirty_it--; if (dirty_it != dirty_db.end() && dirty_it->first.oid == op->oid) { op->version = dirty_it->first.version + 1; } else { auto clean_it = object_db.find(op->oid); if (clean_it != object_db.end()) { op->version = clean_it->second.version + 1; } else { op->version = 1; } } // Immediately add the operation into dirty_db, so subsequent reads could see it dirty_db.emplace((obj_ver_id){ .oid = op->oid, .version = op->version, }, (dirty_entry){ .state = ST_IN_FLIGHT, .flags = 0, .location = 0, .offset = op->offset, .size = op->len, }); } // First step of the write algorithm: dequeue operation and submit initial write(s) int blockstore::dequeue_write(blockstore_operation *op) { auto dirty_it = dirty_db.find((obj_ver_id){ .oid = op->oid, .version = op->version, }); if (op->len == block_size) { // Big (redirect) write uint64_t loc = allocator_find_free(data_alloc); if (loc == (uint64_t)-1) { // no space op->retval = -ENOSPC; op->callback(op); return 1; } BS_SUBMIT_GET_SQE(sqe, data); dirty_it->second.location = loc << block_order; dirty_it->second.state = ST_D_SUBMITTED; allocator_set(data_alloc, loc, true); data->iov = (struct iovec){ op->buf, op->len }; data->op = op; io_uring_prep_writev( sqe, data_fd, &data->iov, 1, data_offset + (loc << block_order) ); op->pending_ops = 1; op->min_used_journal_sector = op->max_used_journal_sector = 0; } else { // Small (journaled) write // First check if the journal has sufficient space // FIXME Always two SQEs for now. Although it's possible to send 1 sometimes uint64_t next_pos = journal.next_free; if (512 - journal.in_sector_pos < sizeof(struct journal_entry_small_write)) { //if (journal.len - next_pos < op->len) // two_sqes = true; next_pos = (next_pos+512) < journal.len ? next_pos+512 : 512; // Also check if we have an unused memory buffer for the journal sector if (journal.sector_info[((journal.cur_sector + 1) % journal.sector_count)].usage_count > 0) { // No memory buffer available. Wait for it. op->wait_for = WAIT_JOURNAL_BUFFER; return 0; } } //else if (journal.sector_info[journal.cur_sector].offset + 512 != journal.next_free || // journal.len - next_pos < op->len) // two_sqes = true; next_pos = (journal.len - next_pos < op->len ? 512 : next_pos) + op->len; if (next_pos >= journal.used_start) { // No space in the journal. Wait for it. op->wait_for = WAIT_JOURNAL; op->wait_detail = next_pos; return 0; } // There is sufficient space. Get SQE(s) BS_SUBMIT_GET_SQE(sqe1, data1); BS_SUBMIT_GET_SQE(sqe2, data2); // Got SQEs. Prepare journal sector write if (512 - journal.in_sector_pos < sizeof(struct journal_entry_small_write)) { // Move to the next journal sector // Also select next sector buffer in memory journal.cur_sector = ((journal.cur_sector + 1) % journal.sector_count); journal.sector_info[journal.cur_sector].offset = journal.next_free; journal.in_sector_pos = 0; journal.next_free = (journal.next_free+512) < journal.len ? journal.next_free + 512 : 512; memset(journal.sector_buf + 512*journal.cur_sector, 0, 512); } journal_entry_small_write *je = (struct journal_entry_small_write*)( journal.sector_buf + 512*journal.cur_sector + journal.in_sector_pos ); *je = { .crc32 = 0, .magic = JOURNAL_MAGIC, .type = JE_SMALL_WRITE, .size = sizeof(struct journal_entry_small_write), .crc32_prev = journal.crc32_last, .oid = op->oid, .version = op->version, .offset = op->offset, .len = op->len, }; je->crc32 = je_crc32((journal_entry*)je); journal.crc32_last = je->crc32; data1->iov = (struct iovec){ journal.sector_buf + 512*journal.cur_sector, 512 }; data1->op = op; io_uring_prep_writev( sqe1, journal.fd, &data1->iov, 1, journal.offset + journal.sector_info[journal.cur_sector].offset ); journal.sector_info[journal.cur_sector].usage_count++; // Prepare journal data write journal.next_free = (journal.next_free + op->len) < journal.len ? journal.next_free + op->len : 512; data2->iov = (struct iovec){ op->buf, op->len }; data2->op = op; io_uring_prep_writev( sqe2, journal.fd, &data2->iov, 1, journal.offset + journal.next_free ); dirty_it->second.location = journal.next_free; dirty_it->second.state = ST_J_SUBMITTED; // Move journal.next_free journal.next_free += op->len; op->pending_ops = 2; op->min_used_journal_sector = op->max_used_journal_sector = 1 + journal.cur_sector; } return 1; } void blockstore::handle_write_event(ring_data_t *data, blockstore_operation *op) { if (data->res < 0) { // write error // FIXME: our state becomes corrupted after a write error. maybe do something better than just die throw new std::runtime_error("write operation failed. in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"); } op->pending_ops--; if (op->pending_ops == 0) { // Release used journal sectors if (op->min_used_journal_sector > 0) { for (uint64_t s = op->min_used_journal_sector; s <= op->max_used_journal_sector; s++) { journal.sector_info[s-1].usage_count--; } op->min_used_journal_sector = op->max_used_journal_sector = 0; } // Switch object state auto & dirty_entry = dirty_db[(obj_ver_id){ .oid = op->oid, .version = op->version, }]; if (dirty_entry.state == ST_J_SUBMITTED) { dirty_entry.state = ST_J_WRITTEN; } else if (dirty_entry.state == ST_D_SUBMITTED) { dirty_entry.state = ST_D_WRITTEN; } else if (dirty_entry.state == ST_DEL_SUBMITTED) { dirty_entry.state = ST_DEL_WRITTEN; } // Acknowledge write without sync op->retval = op->len; op->callback(op); // Remember write as unsynced // FIXME: Could state change to ST_STABLE? It could break this check if (IS_BIG_WRITE(dirty_entry.state)) { unsynced_big_writes.push_back((obj_ver_id){ .oid = op->oid, .version = op->version, }); } else { unsynced_small_writes.push_back((obj_ver_id){ .oid = op->oid, .version = op->version, }); } } }