#include "blockstore.h" // Stabilize small write: // 1) Copy data from the journal to the data device // Sync it before writing metadata if we want to keep metadata consistent // Overall it's optional because it can be replayed from the journal until // it's cleared, and reads are also fulfilled from the journal // 2) Increase version on the metadata device and sync it // 3) Advance clean_db entry's version, clear previous journal entries // // This makes 1 4K small write+sync look like: // 512b+4K (journal) + sync + 512b (journal) + sync + 4K (data) [+ sync?] + 512b (metadata) + sync. // WA = 2.375. It's not the best, SSD FTL-like redirect-write with defragmentation // could probably be lower even with defragmentation. But it's fixed and it's still // better than in Ceph. :) // Stabilize big write: // 1) Copy metadata from the journal to the metadata device // 2) Move dirty_db entry to clean_db and clear previous journal entries // // This makes 1 128K big write+sync look like: // 128K (data) + sync + 512b (journal) + sync + 512b (journal) + sync + 512b (metadata) + sync. // WA = 1.012. Very good :) // AND We must do it in batches, for the sake of reduced fsync call count // AND We must know what we stabilize. Basic workflow is like: // 1) primary OSD receives sync request // 2) it determines his own unsynced writes from blockstore's information // just before submitting fsync // 3) it submits syncs to blockstore and peers // 4) after everyone acks sync it takes the object list and sends stabilize requests to everyone int blockstore::dequeue_stable(blockstore_operation *op) { obj_ver_id* v; int i, todo = 0; for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++) { auto dirty_it = dirty_db.find(*v); if (dirty_it == dirty_db.end()) { auto clean_it = clean_db.find(v->oid); if (clean_it == clean_db.end() || clean_it->second.version < v->version) { // No such object version op->retval = EINVAL; op->callback(op); return 1; } else { // Already stable } } else if (IS_UNSYNCED(dirty_it->second.state)) { // Object not synced yet. Caller must sync it first op->retval = EAGAIN; op->callback(op); return 1; } else if (!IS_STABLE(dirty_it->second.state)) { todo++; } } if (!todo) { // Already stable op->retval = 0; op->callback(op); return 1; } // Check journal space blockstore_journal_check_t space_check(this); if (!space_check.check_available(op, todo, sizeof(journal_entry_stable), 0)) { return 0; } // There is sufficient space. Get SQEs struct io_uring_sqe *sqe[space_check.sectors_required]; for (i = 0; i < space_check.sectors_required; i++) { BS_SUBMIT_GET_SQE_DECL(sqe[i]); } // Prepare and submit journal entries int s = 0, cur_sector = -1; for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++) { journal_entry_stable *je = (journal_entry_stable*) prefill_single_journal_entry(journal, JE_STABLE, sizeof(journal_entry_stable)); je->oid = v->oid; je->version = v->version; je->crc32 = je_crc32((journal_entry*)je); journal.crc32_last = je->crc32; if (cur_sector != journal.cur_sector) { if (cur_sector == -1) op->min_used_journal_sector = 1 + journal.cur_sector; cur_sector = journal.cur_sector; prepare_journal_sector_write(op, journal, sqe[s++]); } } op->max_used_journal_sector = 1 + journal.cur_sector; op->pending_ops = s; return 1; } int blockstore::continue_stable(blockstore_operation *op) { return 0; } void blockstore::handle_stable_event(ring_data_t *data, blockstore_operation *op) { if (data->res < 0) { // sync error // FIXME: our state becomes corrupted after a write error. maybe do something better than just die throw new std::runtime_error("write operation failed. in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"); } op->pending_ops--; if (op->pending_ops == 0) { // First step: mark dirty_db entries as stable, acknowledge op completion obj_ver_id* v; int i; for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++) { // Mark all dirty_db entries up to op->version as stable auto dirty_it = dirty_db.find(*v); if (dirty_it != dirty_db.end()) { do { if (dirty_it->second.state == ST_J_SYNCED) { dirty_it->second.state = ST_J_STABLE; } else if (dirty_it->second.state == ST_D_META_SYNCED) { dirty_it->second.state = ST_D_STABLE; } else if (IS_STABLE(dirty_it->second.state)) { break; } dirty_it--; } while (dirty_it != dirty_db.begin() && dirty_it->first.oid == v->oid); flusher.flush_queue.push_back(*v); } } // Acknowledge op op->retval = 0; op->callback(op); } } struct copy_buffer_t { uint64_t offset, len; void *buf; }; struct meta_sector_t { uint64_t offset, len; int state; void *buf; int usage_count; }; class journal_flusher_t { blockstore *bs; int wait_state, wait_count; struct io_uring_sqe *sqe; struct ring_data_t *data; bool skip_copy; obj_ver_id cur; std::map::iterator dirty_it; std::vector v; std::vector::iterator it; uint64_t offset, len, submit_len, clean_loc, meta_sector, meta_pos; std::map::iterator meta_it; public: journal_flusher_t(int flush_count); std::map meta_sectors; std::deque flush_queue; void loop(); }; journal_flusher_t::journal_flusher_t(int flusher_count) { } void journal_flusher_t::loop() { // This is much better than implementing the whole function as an FSM // Maybe I should consider a coroutine library like https://github.com/hnes/libaco ... if (wait_state == 1) goto resume_1; else if (wait_state == 2) goto resume_2; else if (wait_state == 3) goto resume_3; else if (wait_state == 4) goto resume_4; else if (wait_state == 5) goto resume_5; else if (wait_state == 6) goto resume_6; else if (wait_state == 7) goto resume_7; if (!flush_queue.size()) return; cur = flush_queue.front(); flush_queue.pop_front(); dirty_it = bs->dirty_db.find(cur); if (dirty_it != bs->dirty_db.end()) { v.clear(); wait_count = 0; clean_loc = UINT64_MAX; skip_copy = false; do { if (dirty_it->second.state == ST_J_STABLE) { // First we submit all reads offset = dirty_it->second.offset; len = dirty_it->second.size; it = v.begin(); while (1) { for (; it != v.end(); it++) if (it->offset >= offset) break; if (it == v.end() || it->offset > offset) { submit_len = it->offset >= offset+len ? len : it->offset-offset; resume_1: sqe = bs->get_sqe(); if (!sqe) { // Can't submit read, ring is full wait_state = 1; return; } v.insert(it, (copy_buffer_t){ .offset = offset, .len = submit_len, .buf = memalign(512, submit_len) }); data = ((ring_data_t*)sqe->user_data); data->iov = (struct iovec){ v.end()->buf, (size_t)submit_len }; data->op = this; io_uring_prep_readv( sqe, bs->journal.fd, &data->iov, 1, bs->journal.offset + dirty_it->second.location + offset ); wait_count++; } if (it == v.end() || it->offset+it->len >= offset+len) { break; } } // So subsequent stabilizers don't flush the entry again dirty_it->second.state = ST_J_MOVE_READ_SUBMITTED; } else if (dirty_it->second.state == ST_D_STABLE) { // Copy last STABLE entry metadata if (!skip_copy) { clean_loc = dirty_it->second.location; } skip_copy = true; } else if (IS_STABLE(dirty_it->second.state)) { break; } dirty_it--; } while (dirty_it != bs->dirty_db.begin() && dirty_it->first.oid == cur.oid); if (clean_loc == UINT64_MAX) { // Find it in clean_db auto clean_it = bs->clean_db.find(cur.oid); if (clean_it == bs->clean_db.end()) { // Object not present at all. This is a bug. throw new std::runtime_error("BUG: Object we are trying to flush not allocated on the data device"); } else clean_loc = clean_it->second.location; } // Also we need to submit the metadata read. We do a read-modify-write for every operation. // But we must check if the same sector is already in memory. // Another option is to keep all raw metadata in memory all the time. Maybe I'll do it sometime... // And yet another option is to use LSM trees for metadata, but it sophisticates everything a lot, // so I'll avoid it as long as I can. meta_sector = (clean_loc / (512 / sizeof(clean_disk_entry))) * 512; meta_pos = (clean_loc % (512 / sizeof(clean_disk_entry))); meta_it = meta_sectors.find(meta_sector); if (meta_it == meta_sectors.end()) { // Not in memory yet, read it meta_it = meta_sectors.emplace(meta_sector, (meta_sector_t){ .offset = meta_sector, .len = 512, .state = 0, // 0 = not read yet .buf = memalign(512, 512), .usage_count = 1, }).first; resume_2: sqe = bs->get_sqe(); if (!sqe) { wait_state = 2; return; } data = ((ring_data_t*)sqe->user_data); data->iov = (struct iovec){ meta_it->second.buf, 512 }; data->op = this; io_uring_prep_writev( sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset + meta_sector ); wait_count++; } else meta_it->second.usage_count++; wait_state = 3; resume_3: // After reads complete we submit writes if (wait_count == 0) { for (it = v.begin(); it != v.end(); it++) { resume_4: sqe = bs->get_sqe(); if (!sqe) { // Can't submit a write, ring is full wait_state = 4; return; } data = ((ring_data_t*)sqe->user_data); data->iov = (struct iovec){ it->buf, (size_t)it->len }; data->op = this; io_uring_prep_writev( sqe, bs->data_fd, &data->iov, 1, bs->data_offset + clean_loc + it->offset ); wait_count++; } // And a metadata write resume_5: if (meta_it->second.state == 0) { // metadata sector is still being read, wait for it wait_state = 5; return; } *((clean_disk_entry*)meta_it->second.buf + meta_pos) = { .oid = cur.oid, .version = cur.version, .flags = DISK_ENTRY_STABLE, }; resume_6: sqe = bs->get_sqe(); if (!sqe) { // Can't submit a write, ring is full wait_state = 6; return; } data = ((ring_data_t*)sqe->user_data); data->iov = (struct iovec){ meta_it->second.buf, 512 }; data->op = this; io_uring_prep_writev( sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset + meta_sector ); wait_count++; wait_state = 7; resume_7: // Done, free all buffers if (wait_count == 0) { meta_it->second.usage_count--; if (meta_it->second.usage_count == 0) { free(meta_it->second.buf); meta_sectors.erase(meta_it); } for (it = v.begin(); it != v.end(); it++) { free(it->buf); } v.clear(); wait_state = 0; } // FIXME Now sync everything } } }