Slic3r/lib/Slic3r/TriangleMesh.pm

569 lines
19 KiB
Perl

package Slic3r::TriangleMesh;
use Moo;
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y Z A B unscale same_point);
use Slic3r::Geometry::Clipper qw(union_ex);
use Storable;
# public
has 'vertices' => (is => 'ro', required => 1); # id => [$x,$y,$z]
has 'facets' => (is => 'ro', required => 1); # id => [ $v1_id, $v2_id, $v3_id ]
# private
has 'edges' => (is => 'rw'); # id => [ $v1_id, $v2_id ]
has 'facets_edges' => (is => 'rw'); # id => [ $e1_id, $e2_id, $e3_id ]
has 'edges_facets' => (is => 'rw'); # id => [ $f1_id, $f2_id, (...) ]
use constant MIN => 0;
use constant MAX => 1;
use constant I_FMT => 'ffffllllc';
use constant I_A => 0;
use constant I_B => 1;
use constant I_A_ID => 2;
use constant I_B_ID => 3;
use constant I_EDGE_A_ID => 4;
use constant I_EDGE_B_ID => 5;
use constant I_FACET_EDGE => 6;
use constant FE_TOP => 0;
use constant FE_BOTTOM => 1;
sub analyze {
my $self = shift;
return if defined $self->edges;
$self->edges([]);
$self->facets_edges([]);
$self->edges_facets([]);
my %table = (); # edge_coordinates => edge_id
my $vertices = $self->vertices; # save method calls
for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) {
my $facet = $self->facets->[$facet_id];
$self->facets_edges->[$facet_id] = [];
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my $lowest_vertex_idx = reduce {
$vertices->[ $facet->[$a] ][Z] < $vertices->[ $facet->[$b] ][Z] ? $a : $b
} -3 .. -1;
@$facet[-3..-1] = (@$facet[$lowest_vertex_idx..-1], @$facet[-3..($lowest_vertex_idx-1)]);
}
# ignore the normal if provided
my @vertices = @$facet[-3..-1];
foreach my $edge ($self->_facet_edges($facet_id)) {
my $edge_coordinates = join ';', sort @$edge;
my $edge_id = $table{$edge_coordinates};
if (!defined $edge_id) {
# Note that the order of vertices in $self->edges is *casual* because it is only
# good for one of the two adjacent facets. For this reason, it must not be used
# when dealing with single facets.
push @{$self->edges}, $edge;
$edge_id = $#{$self->edges};
$table{$edge_coordinates} = $edge_id;
$self->edges_facets->[$edge_id] = [];
}
push @{$self->facets_edges->[$facet_id]}, $edge_id;
push @{$self->edges_facets->[$edge_id]}, $facet_id;
}
}
}
sub merge {
my $class = shift;
my @meshes = @_;
my $vertices = [];
my $facets = [];
foreach my $mesh (@meshes) {
my $v_offset = @$vertices;
push @$vertices, @{$mesh->vertices};
push @$facets, map {
my $f = [@$_];
$f->[$_] += $v_offset for -3..-1;
$f;
} @{$mesh->facets};
}
return $class->new(vertices => $vertices, facets => $facets);
}
sub clone {
Storable::dclone($_[0])
}
sub _facet_edges {
my $self = shift;
my ($facet_id) = @_;
my $facet = $self->facets->[$facet_id];
return (
[ $facet->[-3], $facet->[-2] ],
[ $facet->[-2], $facet->[-1] ],
[ $facet->[-1], $facet->[-3] ],
);
}
# This method is supposed to remove narrow triangles, but it actually doesn't
# work much; I'm committing it for future reference but I'm going to remove it later.
# Note: a 'clean' method should actually take care of non-manifold facets and remove
# them.
sub clean {
my $self = shift;
# retrieve all edges shared by more than two facets;
my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets};
# usually most of these facets are very narrow triangles whose two edges
# are detected as collapsed, and thus added twice to the edge in edge_fasets table
# let's identify these triangles
my @narrow_facets_indexes = ();
foreach my $edge_id (@weird_edges) {
my %facet_count = ();
$facet_count{$_}++ for @{$self->edge_facets->{$edge_id}};
@{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count;
push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count;
}
# remove identified narrow facets
foreach my $facet_id (@narrow_facets_indexes) {last;
splice @{$self->facets}, $facet_id, 1;
splice @{$self->facets_edges}, $facet_id, 1;
foreach my $facet_ides (values %{$self->edge_facets}) {
@$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides;
}
}
Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes)
if @narrow_facets_indexes;
}
sub check_manifoldness {
my $self = shift;
$self->analyze;
# look for any edges belonging to an odd number of facets
# we should actually check that each pair of facets belonging to this edge
# has compatible winding order
my ($first_bad_edge_id) =
grep { @{ $self->edges_facets->[$_] } % 2 } 0..$#{$self->edges_facets};
if (defined $first_bad_edge_id) {
warn sprintf "Warning: The input file contains a hole near edge %f,%f,%f-%f,%f,%f (not manifold). "
. "You might want to repair it and retry, or to check the resulting G-code before printing anyway.\n",
map @{$self->vertices->[$_]}, @{$self->edges->[$first_bad_edge_id]};
return 0;
}
# empty the edges array as we don't really need it anymore
@{$self->edges} = ();
return 1;
}
sub unpack_line {
my ($packed) = @_;
my $data = [ unpack I_FMT, $packed ];
splice @$data, 0, 4, [ @$data[0,1] ], [ @$data[2,3] ];
$data->[$_] = undef for grep $data->[$_] == -1, I_A_ID, I_B_ID, I_EDGE_A_ID, I_EDGE_B_ID, I_FACET_EDGE;
return $data;
}
sub make_loops {
my ($lines) = @_;
my @lines = map unpack_line($_), @$lines;
# remove tangent edges
for my $i (0 .. $#lines) {
next unless defined $lines[$i] && defined $lines[$i][I_FACET_EDGE];
# if the line is a facet edge, find another facet edge
# having the same endpoints but in reverse order
for my $j ($i+1 .. $#lines) {
next unless defined $lines[$j] && defined $lines[$j][I_FACET_EDGE];
# are these facets adjacent? (sharing a common edge on this layer)
if ($lines[$i][I_A_ID] == $lines[$j][I_B_ID] && $lines[$i][I_B_ID] == $lines[$j][I_A_ID]) {
# if they are both oriented upwards or downwards (like a 'V')
# then we can remove both edges from this layer since it won't
# affect the sliced shape
if ($lines[$j][I_FACET_EDGE] == $lines[$i][I_FACET_EDGE]) {
$lines[$i] = undef;
$lines[$j] = undef;
last;
}
# if one of them is oriented upwards and the other is oriented
# downwards, let's only keep one of them (it doesn't matter which
# one since all 'top' lines were reversed at slicing)
if ($lines[$i][I_FACET_EDGE] == FE_TOP && $lines[$j][I_FACET_EDGE] == FE_BOTTOM) {
$lines[$j] = undef;
last;
}
}
}
}
@lines = grep $_, @lines;
# build a map of lines by EDGE_A_ID and A_ID
my %by_edge_a_id = my %by_a_id = ();
for (0..$#lines) {
if (defined(my $edge_a_id = $lines[$_][I_EDGE_A_ID])) {
$by_edge_a_id{$edge_a_id} //= [];
push @{ $by_edge_a_id{$edge_a_id} }, $_;
}
if (defined(my $a_id = $lines[$_][I_A_ID])) {
$by_a_id{$a_id} //= [];
push @{ $by_a_id{$a_id} }, $_;
}
}
my (@polygons, @failed_loops) = ();
my %used_lines = ();
CYCLE: while (1) {
# take first spare line and start a new loop
my $first_idx = first { !exists $used_lines{$_} } 0..$#lines;
last if !defined $first_idx;
$used_lines{$first_idx} = 1;
my @loop = ($lines[$first_idx]);
while (1) {
# find a line starting where last one finishes
my $line_idx;
$line_idx = first { !exists $used_lines{$_} } @{ $by_edge_a_id{$loop[-1][I_EDGE_B_ID]} // [] }
if defined $loop[-1][I_EDGE_B_ID];
$line_idx //= first { !exists $used_lines{$_} } @{ $by_a_id{$loop[-1][I_B_ID]} // [] }
if defined $loop[-1][I_B_ID];
if (!defined $line_idx) {
# check whether we closed this loop
if ((defined $loop[0][I_EDGE_A_ID] && defined $loop[-1][I_EDGE_B_ID] && $loop[0][I_EDGE_A_ID] == $loop[-1][I_EDGE_B_ID])
|| (defined $loop[0][I_A_ID] && defined $loop[-1][I_B_ID] && $loop[0][I_A_ID] == $loop[-1][I_B_ID])) {
# loop is complete!
push @polygons, Slic3r::Polygon->new(map $_->[I_A], @loop);
Slic3r::debugf " Discovered %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@{$polygons[-1]})
if $Slic3r::debug;
next CYCLE;
}
# we can't close this loop!
push @failed_loops, [@loop];
next CYCLE;
}
push @loop, $lines[$line_idx];
$used_lines{$line_idx} = 1;
}
}
# TODO: we should try to combine failed loops
for my $loop (grep @$_ >= 3, @failed_loops) {
push @polygons, Slic3r::Polygon->new(map $_->[I_A], @$loop);
Slic3r::debugf " Discovered failed %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@$loop)
if $Slic3r::debug;
}
return (@failed_loops ? 1 : 0, [@polygons]);
}
sub rotate {
my $self = shift;
my ($deg, $center) = @_;
return if $deg == 0;
my $rad = Slic3r::Geometry::deg2rad($deg);
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
@$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, $center, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]);
}
}
sub scale {
my $self = shift;
my ($factor) = @_;
return if $factor == 1;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $factor for X,Y,Z;
}
}
sub scale_xyz {
my $self = shift;
my ($versor) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $versor->[$_] for X,Y,Z;
}
}
sub move {
my $self = shift;
my (@shift) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] += $shift[$_] || 0 for X,Y,Z;
}
}
sub align_to_origin {
my $self = shift;
# calculate the displacements needed to
# have lowest value for each axis at coordinate 0
my $bb = $self->bounding_box;
$self->move(map -$bb->extents->[$_][MIN], X,Y,Z);
}
sub center_around_origin {
my $self = shift;
$self->move(map -$_, @{ $self->center });
}
sub center {
my $self = shift;
return $self->bounding_box->center;
}
sub duplicate {
my $self = shift;
my (@shifts) = @_;
my @new_facets = ();
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
foreach my $shift (@shifts) {
push @new_facets, [ $normal ];
foreach my $vertex (@vertices) {
push @{$self->vertices}, [ map $self->vertices->[$vertex][$_] + ($shift->[$_] || 0), (X,Y,Z) ];
push @{$new_facets[-1]}, $#{$self->vertices};
}
}
}
push @{$self->facets}, @new_facets;
$self->BUILD;
}
sub used_vertices {
my $self = shift;
return [ map $self->vertices->[$_], map @$_, @{$self->facets} ];
}
sub bounding_box {
my $self = shift;
return Slic3r::Geometry::BoundingBox->new_from_points_3D($self->used_vertices);
}
sub size {
my $self = shift;
return $self->bounding_box->size;
}
sub slice_facet {
my $self = shift;
my ($print_object, $facet_id) = @_;
my @vertices = @{$self->facets->[$facet_id]}[-3..-1];
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_id, map @{$self->vertices->[$_]}, @vertices
if $Slic3r::debug;
# find the vertical extents of the facet
my @z = map $_->[Z], @{$self->vertices}[@vertices];
my $min_z = min(@z);
my $max_z = max(@z);
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z
if $Slic3r::debug;
if ($max_z == $min_z) {
Slic3r::debugf "Facet is horizontal; ignoring\n";
return;
}
# calculate the layer extents
my ($min_layer, $max_layer) = $print_object->get_layer_range($min_z, $max_z);
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer
if $Slic3r::debug;
my $lines = {}; # layer_id => [ lines ]
for my $layer_id ($min_layer .. $max_layer) {
my $layer = $print_object->layers->[$layer_id];
$lines->{$layer_id} ||= [];
push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z);
}
return $lines;
}
sub intersect_facet {
my $self = shift;
my ($facet_id, $z) = @_;
my @vertices_ids = @{$self->facets->[$facet_id]}[-3..-1];
my %vertices = map { $_ => $self->vertices->[$_] } @vertices_ids; # cache vertices
my @edge_ids = @{$self->facets_edges->[$facet_id]};
my @edge_vertices_ids = $self->_facet_edges($facet_id);
my (@points, @intersection_points, @points_on_layer) = ();
for my $e (0..2) {
my ($a_id, $b_id) = @{$edge_vertices_ids[$e]};
my ($a, $b) = @vertices{$a_id, $b_id};
#printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z;
if ($a->[Z] == $b->[Z] && $a->[Z] == $z) {
# edge is horizontal and belongs to the current layer
my $edge_type = (grep $vertices{$_}[Z] < $z, @vertices_ids) ? FE_TOP : FE_BOTTOM;
if ($edge_type == FE_TOP) {
($a, $b) = ($b, $a);
($a_id, $b_id) = ($b_id, $a_id);
}
# We assume that this method is never being called for horizontal
# facets, so no other edge is going to be on this layer.
return pack I_FMT, (
$a->[X], $a->[Y], # I_A
$b->[X], $b->[Y], # I_B
$a_id, # I_A_ID
$b_id, # I_B_ID
-1, # I_EDGE_A_ID
-1, # I_EDGE_B_ID
$edge_type, # I_FACET_EDGE
);
#print "Horizontal edge at $z!\n";
} elsif ($a->[Z] == $z) {
#print "A point on plane $z!\n";
push @points, [ $a->[X], $a->[Y], $a_id ];
push @points_on_layer, $#points;
} elsif ($b->[Z] == $z) {
#print "B point on plane $z!\n";
push @points, [ $b->[X], $b->[Y], $b_id ];
push @points_on_layer, $#points;
} elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) {
# edge intersects the current layer; calculate intersection
push @points, [
$b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
undef,
$edge_ids[$e],
];
push @intersection_points, $#points;
#print "Intersects at $z!\n";
}
}
if (@points_on_layer == 2) {
if (@intersection_points == 1) {
splice @points, $points_on_layer[1], 1;
} elsif (@intersection_points == 0) {
return if same_point(@points[@points_on_layer]);
}
}
if (@points) {
# defensive programming:
die "Facets must intersect each plane 0 or 2 times" if @points != 2;
return pack I_FMT, (
$points[B][X], $points[B][Y], # I_A
$points[A][X], $points[A][Y], # I_B
$points[B][2] // -1, # I_A_ID /
$points[A][2] // -1, # I_B_ID /
$points[B][3] // -1, # I_EDGE_A_ID /
$points[A][3] // -1, # I_EDGE_B_ID /
-1, # I_FACET_EDGE
);
#printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points;
}
return ();
}
sub get_connected_facets {
my $self = shift;
my ($facet_id) = @_;
my %facets = ();
foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) {
$facets{$_} = 1 for @{$self->edges_facets->[$edge_id]};
}
delete $facets{$facet_id};
return keys %facets;
}
sub split_mesh {
my $self = shift;
$self->analyze;
my @meshes = ();
# loop while we have remaining facets
while (1) {
# get the first facet
my @facet_queue = ();
my @facets = ();
for (my $i = 0; $i <= $#{$self->facets}; $i++) {
if (defined $self->facets->[$i]) {
push @facet_queue, $i;
last;
}
}
last if !@facet_queue;
while (defined (my $facet_id = shift @facet_queue)) {
next unless defined $self->facets->[$facet_id];
push @facets, map [ @$_ ], $self->facets->[$facet_id];
push @facet_queue, $self->get_connected_facets($facet_id);
$self->facets->[$facet_id] = undef;
}
my %vertices = map { $_ => 1 } map @$_[-3..-1], @facets;
my @new_vertices = keys %vertices;
my %new_vertices = map { $new_vertices[$_] => $_ } 0..$#new_vertices;
foreach my $facet (@facets) {
$facet->[$_] = $new_vertices{$facet->[$_]} for -3..-1;
}
push @meshes, Slic3r::TriangleMesh->new(
facets => \@facets,
vertices => [ map $self->vertices->[$_], keys %vertices ],
);
}
return @meshes;
}
sub horizontal_projection {
my $self = shift;
my @f = ();
foreach my $facet (@{$self->facets}) {
push @f, Slic3r::Polygon->new(map [ @{$self->vertices->[$_]}[X,Y] ], @$facet);
}
my $scale_vector = Math::Clipper::integerize_coordinate_sets({ bits => 32 }, @f);
$_->make_counter_clockwise for @f; # do this after scaling, as winding order might change while doing that
my $union = union_ex([ Slic3r::Geometry::Clipper::offset(\@f, 10000) ]);
Math::Clipper::unscale_coordinate_sets($scale_vector, $_) for @$union;
return $union;
}
1;