Slic3r/lib/Slic3r/Print/Object.pm

1296 lines
57 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

package Slic3r::Print::Object;
use Moo;
use List::Util qw(min max sum first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(X Y Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points);
use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex
offset offset_ex offset2);
use Slic3r::Surface ':types';
has 'print' => (is => 'ro', weak_ref => 1, required => 1);
has 'input_file' => (is => 'rw', required => 0);
has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id
has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates
has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates
has 'layers' => (is => 'rw', default => sub { [] });
has 'support_layers' => (is => 'rw', default => sub { [] });
has 'config_overrides' => (is => 'rw', default => sub { Slic3r::Config->new });
has 'config' => (is => 'rw');
has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ]
has 'fill_maker' => (is => 'lazy');
has '_slice_z_table' => (is => 'lazy');
sub BUILD {
my $self = shift;
$self->init_config;
# make layers taking custom heights into account
my $print_z = my $slice_z = my $height = 0;
# add raft layers
for my $id (0 .. $self->config->raft_layers-1) {
$height = ($id == 0)
? $Slic3r::Config->get_value('first_layer_height')
: $Slic3r::Config->layer_height;
$print_z += $height;
push @{$self->layers}, Slic3r::Layer->new(
object => $self,
id => $id,
height => $height,
print_z => $print_z,
slice_z => -1,
);
}
# loop until we have at least one layer and the max slice_z reaches the object height
my $max_z = unscale $self->size->[Z];
while (!@{$self->layers} || ($slice_z - $height) <= $max_z) {
my $id = $#{$self->layers} + 1;
# assign the default height to the layer according to the general settings
$height = ($id == 0)
? $Slic3r::Config->get_value('first_layer_height')
: $Slic3r::Config->layer_height;
# look for an applicable custom range
if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) {
$height = $range->[2];
# if user set custom height to zero we should just skip the range and resume slicing over it
if ($height == 0) {
$slice_z += $range->[1] - $range->[0];
next;
}
}
$print_z += $height;
$slice_z += $height/2;
### Slic3r::debugf "Layer %d: height = %s; slice_z = %s; print_z = %s\n", $id, $height, $slice_z, $print_z;
push @{$self->layers}, Slic3r::Layer->new(
object => $self,
id => $id,
height => $height,
print_z => $print_z,
slice_z => scale $slice_z,
);
$slice_z += $height/2; # add the other half layer
}
}
sub _build_fill_maker {
my $self = shift;
return Slic3r::Fill->new(object => $self);
}
sub _build__slice_z_table {
my $self = shift;
return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]);
}
# This should be probably moved in Print.pm at the point where we sort Layer objects
sub _trigger_copies {
my $self = shift;
return unless @{$self->copies} > 1;
# order copies with a nearest neighbor search
@{$self->copies} = @{chained_path_points($self->copies)}
}
sub init_config {
my $self = shift;
$self->config(Slic3r::Config->merge($self->print->config, $self->config_overrides));
}
sub layer_count {
my $self = shift;
return scalar @{ $self->layers };
}
sub get_layer_range {
my $self = shift;
my ($min_z, $max_z) = @_;
my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z
return (
$min_layer,
$self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z
);
}
sub bounding_box {
my $self = shift;
# since the object is aligned to origin, bounding box coincides with size
return Slic3r::Geometry::BoundingBox->new_from_points([ map Slic3r::Point->new(@$_[X,Y]), [0,0], $self->size ]);
}
sub slice {
my $self = shift;
my %params = @_;
# make sure all layers contain layer region objects for all regions
my $regions_count = $self->print->regions_count;
foreach my $layer (@{ $self->layers }) {
$layer->region($_) for 0 .. ($regions_count-1);
}
# process facets
for my $region_id (0 .. $#{$self->meshes}) {
my $mesh = $self->meshes->[$region_id] // next; # ignore undef meshes
my %lines = (); # layer_id => [ lines ]
my $apply_lines = sub {
my $lines = shift;
foreach my $layer_id (keys %$lines) {
$lines{$layer_id} ||= [];
push @{$lines{$layer_id}}, @{$lines->{$layer_id}};
}
};
Slic3r::parallelize(
disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets
items => [ 0..$#{$mesh->facets} ],
thread_cb => sub {
my $q = shift;
my $result_lines = {};
while (defined (my $facet_id = $q->dequeue)) {
my $lines = $mesh->slice_facet($self, $facet_id);
foreach my $layer_id (keys %$lines) {
$result_lines->{$layer_id} ||= [];
push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} };
}
}
return $result_lines;
},
collect_cb => sub {
$apply_lines->($_[0]);
},
no_threads_cb => sub {
for (0..$#{$mesh->facets}) {
my $lines = $mesh->slice_facet($self, $_);
$apply_lines->($lines);
}
},
);
# free memory
undef $mesh;
undef $self->meshes->[$region_id];
foreach my $layer (@{ $self->layers }) {
Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n",
$layer->id, unscale $layer->slice_z if $Slic3r::debug;
my $layerm = $layer->regions->[$region_id];
my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($lines{$layer->id});
$layer->slicing_errors(1) if $slicing_errors;
$layerm->make_surfaces($loops);
# free memory
delete $lines{$layer->id};
}
}
# free memory
$self->meshes(undef);
# remove last layer(s) if empty
pop @{$self->layers} while @{$self->layers} && (!map @{$_->slices}, @{$self->layers->[-1]->regions});
foreach my $layer (@{ $self->layers }) {
# merge all regions' slices to get islands
$layer->make_slices;
}
# detect slicing errors
my $warning_thrown = 0;
for my $i (0 .. $#{$self->layers}) {
my $layer = $self->layers->[$i];
next unless $layer->slicing_errors;
if (!$warning_thrown) {
warn "The model has overlapping or self-intersecting facets. I tried to repair it, "
. "however you might want to check the results or repair the input file and retry.\n";
$warning_thrown = 1;
}
# try to repair the layer surfaces by merging all contours and all holes from
# neighbor layers
Slic3r::debugf "Attempting to repair layer %d\n", $i;
foreach my $region_id (0 .. $#{$layer->regions}) {
my $layerm = $layer->region($region_id);
my (@upper_surfaces, @lower_surfaces);
for (my $j = $i+1; $j <= $#{$self->layers}; $j++) {
if (!$self->layers->[$j]->slicing_errors) {
@upper_surfaces = @{$self->layers->[$j]->region($region_id)->slices};
last;
}
}
for (my $j = $i-1; $j >= 0; $j--) {
if (!$self->layers->[$j]->slicing_errors) {
@lower_surfaces = @{$self->layers->[$j]->region($region_id)->slices};
last;
}
}
my $union = union_ex([
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
]);
my $diff = diff_ex(
[ map @$_, @$union ],
[ map @{$_->expolygon->holes}, @upper_surfaces, @lower_surfaces, ],
);
$layerm->slices->clear;
$layerm->slices->append(
map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@$diff
);
}
# update layer slices after repairing the single regions
$layer->make_slices;
}
# remove empty layers from bottom
my $first_object_layer_id = $self->config->raft_layers;
while (@{$self->layers} && !@{$self->layers->[$first_object_layer_id]->slices} && !map @{$_->thin_walls}, @{$self->layers->[$first_object_layer_id]->regions}) {
splice @{$self->layers}, $first_object_layer_id, 1;
for (my $i = $first_object_layer_id; $i <= $#{$self->layers}; $i++) {
$self->layers->[$i]->id($i);
}
}
}
sub make_perimeters {
my $self = shift;
# compare each layer to the one below, and mark those slices needing
# one additional inner perimeter, like the top of domed objects-
# this algorithm makes sure that at least one perimeter is overlapping
# but we don't generate any extra perimeter if fill density is zero, as they would be floating
# inside the object - infill_only_where_needed should be the method of choice for printing
# hollow objects
if ($self->config->extra_perimeters && $self->config->perimeters > 0 && $self->config->fill_density > 0) {
for my $region_id (0 .. ($self->print->regions_count-1)) {
for my $layer_id (0 .. $self->layer_count-2) {
my $layerm = $self->layers->[$layer_id]->regions->[$region_id];
my $upper_layerm = $self->layers->[$layer_id+1]->regions->[$region_id];
my $perimeter_spacing = $layerm->perimeter_flow->scaled_spacing;
my $overlap = $perimeter_spacing; # one perimeter
my $diff = diff(
offset([ map @{$_->expolygon}, @{$layerm->slices} ], -($self->config->perimeters * $perimeter_spacing)),
offset([ map @{$_->expolygon}, @{$upper_layerm->slices} ], -$overlap),
);
next if !@$diff;
# if we need more perimeters, $diff should contain a narrow region that we can collapse
$diff = diff(
$diff,
offset2($diff, -$perimeter_spacing, +$perimeter_spacing),
1,
);
next if !@$diff;
# diff contains the collapsed area
foreach my $slice (@{$layerm->slices}) {
my $extra_perimeters = 0;
CYCLE: while (1) {
# compute polygons representing the thickness of the hypotetical new internal perimeter
# of our slice
$extra_perimeters++;
my $hypothetical_perimeter = diff(
offset($slice->expolygon->arrayref, -($perimeter_spacing * ($self->config->perimeters + $extra_perimeters-1))),
offset($slice->expolygon->arrayref, -($perimeter_spacing * ($self->config->perimeters + $extra_perimeters))),
);
last CYCLE if !@$hypothetical_perimeter; # no extra perimeter is possible
# only add the perimeter if there's an intersection with the collapsed area
last CYCLE if !@{ intersection($diff, $hypothetical_perimeter) };
Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id;
$slice->extra_perimeters($extra_perimeters);
}
}
}
}
}
Slic3r::parallelize(
items => sub { 0 .. ($self->layer_count-1) },
thread_cb => sub {
my $q = shift;
while (defined (my $layer_id = $q->dequeue)) {
$self->layers->[$layer_id]->make_perimeters;
}
},
collect_cb => sub {},
no_threads_cb => sub {
$_->make_perimeters for @{$self->layers};
},
);
}
sub detect_surfaces_type {
my $self = shift;
Slic3r::debugf "Detecting solid surfaces...\n";
# prepare a reusable subroutine to make surface differences
my $surface_difference = sub {
my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_;
my $expolygons = diff_ex(
[ map @$_, @$subject_surfaces ],
[ map @$_, @$clip_surfaces ],
1,
);
return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
@$expolygons;
};
for my $region_id (0 .. ($self->print->regions_count-1)) {
for my $i (0 .. ($self->layer_count-1)) {
my $layerm = $self->layers->[$i]->regions->[$region_id];
# comparison happens against the *full* slices (considering all regions)
my $upper_layer = $self->layers->[$i+1];
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
my (@bottom, @top, @internal) = ();
# find top surfaces (difference between current surfaces
# of current layer and upper one)
if ($upper_layer) {
@top = $surface_difference->(
[ map $_->expolygon, @{$layerm->slices} ],
$upper_layer->slices,
S_TYPE_TOP,
$layerm,
);
} else {
# if no upper layer, all surfaces of this one are solid
# we clone surfaces because we're going to clear the slices collection
@top = map $_->clone, @{$layerm->slices};
$_->surface_type(S_TYPE_TOP) for @top;
}
# find bottom surfaces (difference between current surfaces
# of current layer and lower one)
if ($lower_layer) {
# lower layer's slices are already Surface objects
@bottom = $surface_difference->(
[ map $_->expolygon, @{$layerm->slices} ],
$lower_layer->slices,
S_TYPE_BOTTOM,
$layerm,
);
} else {
# if no lower layer, all surfaces of this one are solid
# we clone surfaces because we're going to clear the slices collection
@bottom = map $_->clone, @{$layerm->slices};
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
}
# now, if the object contained a thin membrane, we could have overlapping bottom
# and top surfaces; let's do an intersection to discover them and consider them
# as bottom surfaces (to allow for bridge detection)
if (@top && @bottom) {
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping);
@top = $surface_difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP, $layerm);
}
# find internal surfaces (difference between top/bottom surfaces and others)
@internal = $surface_difference->(
[ map $_->expolygon, @{$layerm->slices} ],
[ map $_->expolygon, @top, @bottom ],
S_TYPE_INTERNAL,
$layerm,
);
# save surfaces to layer
$layerm->slices->clear;
$layerm->slices->append(@bottom, @top, @internal);
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
$layerm->id, scalar(@bottom), scalar(@top), scalar(@internal);
}
# clip surfaces to the fill boundaries
foreach my $layer (@{$self->layers}) {
my $layerm = $layer->regions->[$region_id];
my $fill_boundaries = [ map $_->clone->p, @{$layerm->fill_surfaces} ];
$layerm->fill_surfaces->clear;
foreach my $surface (@{$layerm->slices}) {
my $intersection = intersection_ex(
[ $surface->p ],
$fill_boundaries,
);
$layerm->fill_surfaces->append(map Slic3r::Surface->new
(expolygon => $_, surface_type => $surface->surface_type),
@$intersection);
}
}
}
}
sub clip_fill_surfaces {
my $self = shift;
return unless $self->config->infill_only_where_needed;
# We only want infill under ceilings; this is almost like an
# internal support material.
my $additional_margin = scale 3;
my @overhangs = ();
for my $layer_id (reverse 0..$#{$self->layers}) {
my $layer = $self->layers->[$layer_id];
# clip this layer's internal surfaces to @overhangs
foreach my $layerm (@{$layer->regions}) {
my @new_internal = map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNAL,
),
@{intersection_ex(
[ map @$_, @overhangs ],
[ map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ],
)};
my @new_surfaces = (
@new_internal,
(map $_->clone, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}),
);
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append(@new_surfaces);
}
# get this layer's overhangs
if ($layer_id > 0) {
my $lower_layer = $self->layers->[$layer_id-1];
# loop through layer regions so that we can use each region's
# specific overhang width
foreach my $layerm (@{$layer->regions}) {
my $overhang_width = $layerm->overhang_width;
# we want to support any solid surface, not just tops
# (internal solids might have been generated)
push @overhangs, map @{$_->offset_ex($additional_margin)}, @{intersection_ex(
[ map @{$_->expolygon}, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ],
[ map @$_, map @{$_->offset_ex(-$overhang_width)}, @{$lower_layer->slices} ],
)};
}
}
}
}
sub bridge_over_infill {
my $self = shift;
return if $self->config->fill_density == 1;
for my $layer_id (1..$#{$self->layers}) {
my $layer = $self->layers->[$layer_id];
my $lower_layer = $self->layers->[$layer_id-1];
foreach my $layerm (@{$layer->regions}) {
# compute the areas needing bridge math
my @internal_solid = grep $_->surface_type == S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces};
my @lower_internal = grep $_->surface_type == S_TYPE_INTERNAL, map @{$_->fill_surfaces}, @{$lower_layer->regions};
my $to_bridge = intersection_ex(
[ map $_->p, @internal_solid ],
[ map $_->p, @lower_internal ],
);
next unless @$to_bridge;
Slic3r::debugf "Bridging %d internal areas at layer %d\n", scalar(@$to_bridge), $layer_id;
# build the new collection of fill_surfaces
{
my @new_surfaces = map $_->clone, grep $_->surface_type != S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALBRIDGE,
), @$to_bridge;
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALSOLID,
), @{diff_ex(
[ map $_->p, @internal_solid ],
[ map @$_, @$to_bridge ],
1,
)};
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append(@new_surfaces);
}
# exclude infill from the layers below if needed
# see discussion at https://github.com/alexrj/Slic3r/issues/240
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
if (0) {
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
for (my $i = $layer_id-1; $excess >= $self->layers->[$i]->height; $i--) {
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
foreach my $lower_layerm (@{$self->layers->[$i]->regions}) {
my @new_surfaces = ();
# subtract the area from all types of surfaces
foreach my $group (Slic3r::Surface->group(@{$lower_layerm->fill_surfaces})) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
@{diff_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALVOID,
), @{intersection_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
}
$lower_layerm->fill_surfaces->clear;
$lower_layerm->fill_surfaces->append(@new_surfaces);
}
$excess -= $self->layers->[$i]->height;
}
}
}
}
}
sub discover_horizontal_shells {
my $self = shift;
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
my $margin = scale &Slic3r::EXTERNAL_INFILL_MARGIN;
for my $region_id (0 .. ($self->print->regions_count-1)) {
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layerm = $self->layers->[$i]->regions->[$region_id];
if ($self->config->solid_infill_every_layers && $self->config->fill_density > 0
&& ($i % $self->config->solid_infill_every_layers) == 0) {
my @surfaces = @{$layerm->fill_surfaces};
for my $i (0..$#surfaces) {
next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL;
$layerm->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID);
}
}
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
# find slices of current type for current layer
# use slices instead of fill_surfaces because they also include the perimeter area
# which needs to be propagated in shells; we need to grow slices like we did for
# fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
# not work in some situations, as there won't be any grown region in the perimeter
# area (this was seen in a model where the top layer had one extra perimeter, thus
# its fill_surfaces was thinner than the lower layer's infill)
my $solid = offset_ex([ map $_->p, grep $_->surface_type == $type, @{$layerm->slices} ], $margin);
next if !@$solid;
Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
my $solid_layers = ($type == S_TYPE_TOP)
? $self->config->top_solid_layers
: $self->config->bottom_solid_layers;
NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
abs($n - $i) <= $solid_layers-1;
($type == S_TYPE_TOP) ? $n-- : $n++) {
next if $n < 0 || $n >= $self->layer_count;
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
my @neighbor_fill_surfaces = @{$self->layers->[$n]->regions->[$region_id]->fill_surfaces};
# find intersection between neighbor and current layer's surfaces
# intersections have contours and holes
# we update $solid so that we limit the next neighbor layer to the areas that were
# found on this one - in other words, solid shells on one layer (for a given external surface)
# are always a subset of the shells found on the previous shell layer
# this approach allows for DWIM in hollow sloping vases, where we want bottom
# shells to be generated in the base but not in the walls (where there are many
# narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
# upper perimeter as an obstacle and shell will not be propagated to more upper layers
my $new_internal_solid = $solid = intersection_ex(
[ map @$_, @$solid ],
[ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ],
1,
);
next EXTERNAL if !@$new_internal_solid;
# make sure the new internal solid is wide enough, as it might get collapsed when
# spacing is added in Fill.pm
{
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
my $too_narrow = diff_ex(
[ map @$_, @$new_internal_solid ],
offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin),
1,
);
# if some parts are going to collapse, use a different strategy according to fill density
if (@$too_narrow) {
if ($self->config->fill_density > 0) {
# if we have internal infill, grow the collapsing parts and add the extra area to
# the neighbor layer as well as to our original surfaces so that we support this
# additional area in the next shell too
# make sure our grown surfaces don't exceed the fill area
my @grown = map @$_, @{intersection_ex(
offset([ map @$_, @$too_narrow ], +$margin),
[ map $_->p, @neighbor_fill_surfaces ],
)};
$new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
} else {
# if we're printing a hollow object, we discard such small parts
$new_internal_solid = $solid = diff_ex(
[ map @$_, @$new_internal_solid ],
[ map @$_, @$too_narrow ],
);
}
}
}
# internal-solid are the union of the existing internal-solid surfaces
# and new ones
my $internal_solid = union_ex([
( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ),
( map @$_, @$new_internal_solid ),
]);
# subtract intersections from layer surfaces to get resulting internal surfaces
my $internal = diff_ex(
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ],
[ map @$_, @$internal_solid ],
1,
);
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
scalar(@$internal_solid), scalar(@$internal);
# assign resulting internal surfaces to layer
my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces;
$neighbor_fill_surfaces->clear;
$neighbor_fill_surfaces->append(map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$internal);
# assign new internal-solid surfaces to layer
$neighbor_fill_surfaces->append(map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID), @$internal_solid);
# assign top and bottom surfaces to layer
foreach my $s (Slic3r::Surface->group(grep { ($_->surface_type == S_TYPE_TOP) || ($_->surface_type == S_TYPE_BOTTOM) } @neighbor_fill_surfaces)) {
my $solid_surfaces = diff_ex(
[ map $_->p, @$s ],
[ map @$_, @$internal_solid, @$internal ],
1,
);
$neighbor_fill_surfaces->append(map $s->[0]->clone(expolygon => $_), @$solid_surfaces);
}
}
}
}
}
}
# combine fill surfaces across layers
sub combine_infill {
my $self = shift;
return unless $self->config->infill_every_layers > 1 && $self->config->fill_density > 0;
my $every = $self->config->infill_every_layers;
my $layer_count = $self->layer_count;
my @layer_heights = map $self->layers->[$_]->height, 0 .. $layer_count-1;
for my $region_id (0 .. ($self->print->regions_count-1)) {
# limit the number of combined layers to the maximum height allowed by this regions' nozzle
my $nozzle_diameter = $self->print->regions->[$region_id]->extruders->{infill}->nozzle_diameter;
# define the combinations
my @combine = (); # layer_id => thickness in layers
{
my $current_height = my $layers = 0;
for my $layer_id (1 .. $#layer_heights) {
my $height = $self->layers->[$layer_id]->height;
if ($current_height + $height >= $nozzle_diameter || $layers >= $every) {
$combine[$layer_id-1] = $layers;
$current_height = $layers = 0;
}
$current_height += $height;
$layers++;
}
}
# skip bottom layer
for my $layer_id (1 .. $#combine) {
next unless ($combine[$layer_id] // 1) > 1;
my @layerms = map $self->layers->[$_]->regions->[$region_id],
($layer_id - ($combine[$layer_id]-1) .. $layer_id);
# only combine internal infill
for my $type (S_TYPE_INTERNAL) {
# we need to perform a multi-layer intersection, so let's split it in pairs
# initialize the intersection with the candidates of the lowest layer
my $intersection = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerms[0]->fill_surfaces} ];
# start looping from the second layer and intersect the current intersection with it
for my $layerm (@layerms[1 .. $#layerms]) {
$intersection = intersection_ex(
[ map @$_, @$intersection ],
[ map @{$_->expolygon}, grep $_->surface_type == $type, @{$layerm->fill_surfaces} ],
);
}
my $area_threshold = $layerms[0]->infill_area_threshold;
@$intersection = grep $_->area > $area_threshold, @$intersection;
next if !@$intersection;
Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
scalar(@$intersection),
($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
$layer_id-($every-1), $layer_id;
# $intersection now contains the regions that can be combined across the full amount of layers
# so let's remove those areas from all layers
my @intersection_with_clearance = map @{$_->offset(
$layerms[-1]->solid_infill_flow->scaled_width / 2
+ $layerms[-1]->perimeter_flow->scaled_width / 2
# Because fill areas for rectilinear and honeycomb are grown
# later to overlap perimeters, we need to counteract that too.
+ (($type == S_TYPE_INTERNALSOLID || $self->config->fill_pattern =~ /(rectilinear|honeycomb)/)
? $layerms[-1]->solid_infill_flow->scaled_width * &Slic3r::INFILL_OVERLAP_OVER_SPACING
: 0)
)}, @$intersection;
foreach my $layerm (@layerms) {
my @this_type = grep $_->surface_type == $type, @{$layerm->fill_surfaces};
my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces};
my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type),
@{diff_ex(
[ map @{$_->expolygon}, @this_type ],
[ @intersection_with_clearance ],
)};
# apply surfaces back with adjusted depth to the uppermost layer
if ($layerm->id == $layer_id) {
push @new_this_type,
map Slic3r::Surface->new(
expolygon => $_,
surface_type => $type,
thickness => sum(map $_->height, @layerms),
thickness_layers => scalar(@layerms),
),
@$intersection;
} else {
# save void surfaces
push @this_type,
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALVOID),
@{intersection_ex(
[ map @{$_->expolygon}, @this_type ],
[ @intersection_with_clearance ],
)};
}
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append(@new_this_type, @other_types);
}
}
}
}
}
sub generate_support_material {
my $self = shift;
return unless $self->config->support_material && $self->layer_count >= 2;
my $flow = $self->print->support_material_flow;
# how much we extend support around the actual contact area
#my $margin = $flow->scaled_width / 2;
my $margin = scale 3;
# increment used to reach $margin in steps to avoid trespassing thin objects
my $margin_step = $margin/3;
# if user specified a custom angle threshold, convert it to radians
my $threshold_rad;
if ($self->config->support_material_threshold) {
$threshold_rad = deg2rad($self->config->support_material_threshold + 1); # +1 makes the threshold inclusive
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
}
# shape of contact area
my $contact_loops = 1;
my $circle_radius = 1.5 * $flow->scaled_width;
my $circle_distance = 3 * $circle_radius;
my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
# determine contact areas
my %contact = (); # contact_z => [ polygons ]
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
for my $layer_id (1 .. $#{$self->layers}) {
my $layer = $self->layers->[$layer_id];
my $lower_layer = $self->layers->[$layer_id-1];
# detect overhangs and contact areas needed to support them
my (@overhang, @contact) = ();
foreach my $layerm (@{$layer->regions}) {
my $fw = $layerm->perimeter_flow->scaled_width;
my $diff;
# If a threshold angle was specified, use a different logic for detecting overhangs.
if (defined $threshold_rad || $layer_id <= $self->config->support_material_enforce_layers) {
my $d = defined $threshold_rad
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: 0;
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$d),
[ map @$_, @{$lower_layer->slices} ],
);
# only enforce spacing from the object ($fw/2) if the threshold angle
# is not too high: in that case, $d will be very small (as we need to catch
# very short overhangs), and such contact area would be eaten by the
# enforced spacing, resulting in high threshold angles to be almost ignored
$diff = diff(
offset($diff, $d - $fw/2),
[ map @$_, @{$lower_layer->slices} ],
) if $d > $fw/2;
} else {
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
[ map @$_, @{$lower_layer->slices} ],
);
# $diff now contains the ring or stripe comprised between the boundary of
# lower slices and the centerline of the last perimeter in this overhanging layer.
# Void $diff means that there's no upper perimeter whose centerline is
# outside the lower slice boundary, thus no overhang
}
next if !@$diff;
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
# Let's define the required contact area by using a max gap of half the upper
# extrusion width and extending the area according to the configured margin.
# We increment the area in steps because we don't want our support to overflow
# on the other side of the object (if it's very thin).
{
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
$diff = diff(
offset($diff, $_),
\@slices_margin,
);
}
}
push @contact, @$diff;
}
next if !@contact;
# now apply the contact areas to the layer were they need to be made
{
# get the average nozzle diameter used on this layer
my @nozzle_diameters = map $_->nozzle_diameter,
map { $_->perimeter_flow, $_->solid_infill_flow }
@{$layer->regions};
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
###$contact_z = $layer->print_z - $layer->height;
# ignore this contact area if it's too low
next if $contact_z < $Slic3r::Config->get_value('first_layer_height');
$contact{$contact_z} = [ @contact ];
$overhang{$contact_z} = [ @overhang ];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("contact_" . $contact_z . ".svg",
expolygons => union_ex(\@contact),
red_expolygons => \@overhang,
);
}
}
}
my @contact_z = sort keys %contact;
# find object top surfaces
# we'll use them to clip our support and detect where does it stick
my %top = (); # print_z => [ expolygons ]
{
my $projection = [];
foreach my $layer (reverse @{$self->layers}) {
if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) {
# compute projection of the contact areas above this top layer
# first add all the 'new' contact areas to the current projection
# ('new' means all the areas that are lower than the last top layer
# we considered)
my $min_top = min(keys %top) // max(keys %contact);
# use <= instead of just < because otherwise we'd ignore any contact regions
# having the same Z of top layers
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %contact;
# now find whether any projection falls onto this top surface
my $touching = intersection($projection, [ map $_->p, @top ]);
if (@$touching) {
# grow top surfaces so that interface and support generation are generated
# with some spacing from object - it looks we don't need the actual
# top shapes so this can be done here
$top{ $layer->print_z } = [ offset($touching, $flow->scaled_spacing) ];
}
# remove the areas that touched from the projection that will continue on
# next, lower, top surfaces
$projection = diff($projection, $touching);
}
}
}
my @top_z = sort keys %top;
# we now know the upper and lower boundaries for our support material object
# (@contact_z and @top_z), so we can generate intermediate layers
my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $self->config, $flow);
# if we wanted to apply some special logic to the first support layers lying on
# object's top surfaces this is the place to detect them
# let's now generate interface layers below contact areas
my %interface = (); # layer_id => [ polygons ]
my $interface_layers = $self->config->support_material_interface_layers;
for my $layer_id (0 .. $#support_layers) {
my $z = $support_layers[$layer_id];
my $this = $contact{$z} // next;
# count contact layer as interface layer
for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
$z = $support_layers[$i];
# Compute interface area on this layer as diff of upper contact area
# (or upper interface area) and layer slices.
# This diff is responsible of the contact between support material and
# the top surfaces of the object. We should probably offset the top
# surfaces before performing the diff, but this needs investigation.
$this = $interface{$i} = diff(
[
@$this, # clipped projection of the current contact regions
@{ $interface{$i} || [] }, # interface regions already applied to this layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
# let's now generate support layers under interface layers
my %support = (); # layer_id => [ polygons ]
{
for my $i (reverse 0 .. $#support_layers-1) {
my $z = $support_layers[$i];
$support{$i} = diff(
[
@{ $support{$i+1} || [] }, # support regions on upper layer
@{ $interface{$i+1} || [] }, # interface regions on upper layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $interface{$i} || [] }, # interface regions on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
push @{$self->support_layers}, map Slic3r::Layer::Support->new(
object => $self,
id => $_,
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
print_z => $support_layers[$_],
slice_z => -1,
slices => [],
), 0 .. $#support_layers;
Slic3r::debugf "Generating patterns\n";
# prepare fillers
my $pattern = $self->config->support_material_pattern;
my @angles = ($self->config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
}
my %fillers = (
interface => $self->fill_maker->filler('rectilinear'),
support => $self->fill_maker->filler($pattern),
);
my $interface_angle = $self->config->support_material_angle + 90;
my $interface_spacing = $self->config->support_material_interface_spacing + $flow->spacing;
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
my $support_spacing = $self->config->support_material_spacing + $flow->spacing;
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
my $process_layer = sub {
my ($layer_id) = @_;
$contact{$support_layers[$layer_id]} ||= [];
$interface{$layer_id} ||= [];
$support{$layer_id} ||= [];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("layer_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact{$support_layers[$layer_id]}),
green_expolygons => union_ex($interface{$layer_id}),
);
}
# islands
my $result = { contact => [], interface => [], support => [] };
$result->{islands} = union_ex([
map @$_,
$interface{$layer_id},
$support{$layer_id},
$contact{$support_layers[$layer_id]},
]);
# contact
my $contact_infill = [];
if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) {
my $overhang = $overhang{$support_layers[$layer_id]};
$contact = [ grep $_->is_counter_clockwise, @$contact ];
# generate the outermost loop
my @loops0;
{
# find centerline of the external loop of the contours
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
# apply a pattern to the loop
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
@loops0 = @{diff(
[ @external_loops ],
[ map $circle->clone->translate(@$_), @positions ],
)};
}
# make more loops
my @loops = @loops0;
for my $i (2..$contact_loops) {
my $d = ($i-1) * $flow->scaled_spacing;
push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing);
}
# clip such loops to the side oriented towards the object
@loops = map Slic3r::Polyline->new(@$_),
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
[ offset_ex([ map @$_, @$overhang ], +scale 3) ],
[ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ],
) };
# add the contact infill area to the interface area
$contact_infill = [ offset2(\@loops0, -($contact_loops + 0.5) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ];
# transform loops into ExtrusionPath objects
@loops = map Slic3r::ExtrusionPath->pack(
polyline => $_,
role => EXTR_ROLE_SUPPORTMATERIAL,
flow_spacing => $flow->spacing,
), @loops;
$result->{contact} = [ @loops ];
}
# interface and contact infill
if (@{$interface{$layer_id}} || @$contact_infill) {
$fillers{interface}->angle($interface_angle);
# steal some space from support
$interface{$layer_id} = intersection(
[ offset([ map @$_, $interface{$layer_id}, $contact_infill ], scale 3) ],
[ map @$_, $interface{$layer_id}, $support{$layer_id}, $contact_infill ],
undef, 1,
);
$support{$layer_id} = diff(
$support{$layer_id},
$interface{$layer_id},
);
my @paths = ();
foreach my $expolygon (@{union_ex($interface{$layer_id})}) {
my @p = $fillers{interface}->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => $interface_density,
flow_spacing => $flow->spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$result->{interface} = [ @paths ];
}
# support or flange
if (@{$support{$layer_id}}) {
my $filler = $fillers{support};
$filler->angle($angles[ ($layer_id) % @angles ]);
my $density = $support_density;
my $flow_spacing = $flow->spacing;
# TODO: use offset2_ex()
my $to_infill = union_ex($support{$layer_id}, undef, 1);
my @paths = ();
# base flange
if ($layer_id == 0) {
$filler = $fillers{interface};
$filler->angle($self->config->support_material_angle + 90);
$density = 0.5;
$flow_spacing = $self->print->first_layer_support_material_flow->spacing;
} else {
# draw a perimeter all around support infill
# TODO: use brim ordering algorithm
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => $_->split_at_first_point,
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $flow->spacing,
), map @$_, @$to_infill;
# TODO: use offset2_ex()
$to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ];
}
foreach my $expolygon (@$to_infill) {
my @p = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => $density,
flow_spacing => $flow_spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
push @{$result->{support}}, @paths;
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("islands_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact{$support_layers[$layer_id]} || []),
green_expolygons => union_ex($interface{$layer_id} || []),
red_polylines => [ map $_->unpack->polyline, @{$result->{contact}} ],
green_polylines => [ map $_->unpack->polyline, @{$result->{interface}} ],
polylines => [ map $_->unpack->polyline, @{$result->{support}} ],
);
}
return $result;
};
my $apply = sub {
my ($layer_id, $result) = @_;
my $layer = $self->support_layers->[$layer_id];
my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]);
$layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0;
my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support});
$layer->support_fills($support_collection) if @{$support_collection->paths} > 0;
# TODO: use a Slic3r::ExPolygon::Collection
$layer->support_islands($result->{islands});
};
Slic3r::parallelize(
items => [ 0 .. $#{$self->support_layers} ],
thread_cb => sub {
my $q = shift;
my $result = {};
while (defined (my $layer_id = $q->dequeue)) {
$result->{$layer_id} = $process_layer->($layer_id);
}
return $result;
},
collect_cb => sub {
my $result = shift;
$apply->($_, $result->{$_}) for keys %$result;
},
no_threads_cb => sub {
$apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers};
},
);
}
sub _compute_support_layers {
my ($contact_z, $top_z, $config, $flow) = @_;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
# determine layer height for any non-contact layer
# we use max() to prevent many ultra-thin layers to be inserted in case
# layer_height > nozzle_diameter * 0.75
my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75);
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
(map { $_ + $flow->nozzle_diameter } @$top_z);
# enforce first layer height
my $first_layer_height = $config->get_value('first_layer_height');
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
unshift @support_layers, $first_layer_height;
for (my $i = $#support_layers; $i >= 0; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $support_layers[$i-1] }) {
$target_height = $flow->nozzle_diameter;
}
# enforce first layer height
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
$i++;
}
}
# remove duplicates and make sure all 0.x values have the leading 0
{
my %sl = map { 1 * $_ => 1 } @support_layers;
@support_layers = sort { $a <=> $b } keys %sl;
}
return @support_layers;
}
1;